考研数学复习有哪些概率计算的公式
在考研数学三中,参数估计占数理统计的一多半内容,所以参数估计是重点。小编为大家精心准备了考研数学复习概率计算的公式指导,欢迎大家前来阅读。
考研数学复习概率计算的公式
五大公式包括减法公式、加法公式、乘法公式、全概率公式、贝叶斯公式。
1、减法公式,P(A-B)=P(A)-P(AB)。此公式来自事件关系中的差事件,再结合概率的可列可加性总结出的公式。
2、加法公式,P(A+B)=P(A)+P(B)-P(AB)。此公式来自于事件关系中的和事件,同样结合概率的可列可加性总结出来。学生还应掌握三个事件相加的加法公式。
以上两个公式,在应用当中,有时要结合文氏图来解释会更清楚明白,同时这两个公式在考试中,更多的会出现在填空题当中。所以记住公式的形式是基本要求。
3、乘法公式,是由条件概率公式变形得到,考试中较多的出现在计算题中。在复习过程中,部分同学分不清楚什么时候用条件概率来求,什么时候用积事件概率来求。比如“第一次抽到红球,第二次抽到黑球”时,因为第一次抽到红球也是未知事件,所以要考虑它的概率,这时候用积事件概率来求;如果“在第一次抽到红球已知的情况下,第二次抽到黑球的概率”,这时候因为已知抽到了红球,它已经是一个确定的事实,所以这时候不用考虑抽红球的概率,直接用条件概率,求第二次取到黑球的概率即可。
4、全概率公式
5、贝叶斯公式
以上两个公式是五大公式极为重要的两个公式。结合起来学习比较容易理解。首先,这两个公式首先背景是相同的,即,完成一件事情在逻辑或时间上是需要两个步骤的,通常把第一个步骤称为原因。其次,如果是“由因求果”的问题用全概率公式;是“由果求因”的问题用贝叶斯公式。例如;买零件,一个零件是由A、B、C三个厂家生产的,分别次品率是a%,b%,c%,现在求买到次品的概率时,就要用全概率公式;若已知买到次品了,问是A厂生产的概率,这就要用贝叶斯公式了。这样我们首先分清楚了什么时候用这两个公式。
那么,在应用过程中,我们要注意的问题就是,如何划分完备事件组。通常我们用“因”来做为完备事件组划分的依据,也就是看第一阶段中,有哪些基本事件,根据他们来划分整个样本空间。
最后,在考试中,我们会和他们怎么相遇呢?由于全概率公式在整个概率中都占有非常重要的地位,近5年考试中,没有明确考查全概率公式的题目,但是在最后的计算题中,不止一次的出现,用全概率公式的思想去求分布律或密度函数。所以同学在复习过程当中,对这个公式要重点掌握。
考研数学数理统计部分的分布口诀
正态方和卡方(x2)出,卡方相除变F;
若想得到t分布,一正n卡再相除;
第一个口诀的意思是标准正态分布的平方和可以生成卡方分布,而两卡方分布除以其维数之后相除可以生成F分步,第二个口诀的意思是标准正态分布和卡方分布相除可以得到分布。
参数的矩估计量(值)、最大似然估计量(值)也是经常考的。很多同学遇到这样的题目,总是感觉到束手无策。题目中给出的样本值完全用不上。其实这样的题目非常简单。只要你掌握了矩估计法和最大似然估计法的原理,按照固定的程序去做就可以了。矩法的基本思想就是用样本的阶原点矩作为总体的阶原点矩。估计矩估计法的解题思路是:
(1)当只有一个未知参数时,我们就用样本的一阶原点矩即样本均值来估计总体的一阶原点矩即期望,解出未知参数,就是其矩估计量。
(2)如果有两个未知参数,那么除了要用一阶矩来估计外,还要用二阶矩来估计。因为两个未知数,需要两个方程才能解出。解出未知参数,就是矩估计量。考纲上只要求掌握一阶、二阶矩。
最大似然估计法的最大困难在于正确写出似然函数,它是根据总体的分布律或密度函数写出的,我们给大家一个口诀,方便大家记忆。
样本总体相互换,矩法估计很方便;
似然函数分开算,对数求导得零蛋;
第一条口诀的意思是用样本的`矩来替换总体的矩,就可以算出参数的矩估计;第二个口诀的意思是把似然函数中的未知参数当成变量,求出其驻点,在具体计算的时候就是在似然函数两边求对数,然后求参数的驻点,即为参数的最大似然估计。
如果大家记住了上面的口诀,那么统计部分的知识点就很容易掌握了,最后预祝考生在考试中能取得自己满意的成绩!
考研数学选择题丢分原因分析及对策
选择题丢分原因分析
第一,同学们学数学,一个薄弱环节就是基本概念和基本理论,内容都很熟悉,但不知道如何运用;
第二,虽然考研数学重基础,但不是说8道选择题都是很基本的题目,也有些题是有一定难度的;
第三,考生缺乏对选择题解答的方法和技巧,往往用最常规的方法去做,不但计算量大,浪费时间,还很容易出错,有时甚至得不出结论。
要想解决以上问题,首先,对我们的薄弱环节必须下功夫,实际上选择题里边考的知识点往往就是我们原来的定义或者性质,或者一个定理的外延,所以我们复习定理或性质的时候,既要注意它的内涵又要注意相应的外延。比如说原来的条件变一下,这个题还对不对,平时复习的时候就有意识注意这些问题,这样以后考到这些的时候,你已经事先对这个问题做了准备,考试就很容易了。其次,虽说有些题本身有难度,但是数量并不多,一般来说每年的8道选择题中有一两道是比较难的,剩下的相对都是比较容易的。最后,就是掌握选择题的答题技巧,这一点非常重要,
选择题答题方法总结
(1)直推法
推法是由条件出发,运用相关知识,直接分析、推导或计算出结果,从而作出正确的判断和选择。计算型选择题一般用这种方法,这是最基本、最常用、最重要的方法。
(2)赋值法
是指用满足条件的“特殊值”,包括数值、矩阵、函数以及几何图形,通过推导演算,得出正确选项。
(3)排除法
通过举例子或根据性质定理,排除三个,第四个就是正确答案。这种方法适用于题干中给出的函数是抽象函数,抽象的对立面是具体,所以用具体的例子排除三项得出正确答案,这与上面介绍的赋值法有类似之处。
(4)反推法
就是由选择题的各个选项反推条件,与题设条件或已有的性质、定理及结论相矛盾的选项排除,从而得出正确选项。这种方法适用于选项中涉及到某些具体数值的选择题。
(5)图示法
若题干给出的函数具有某种特性,例如:周期性、奇偶性、对称性、凹凸性、单调性等,可考虑用该方法,画出几何图形,然后借助几何图形的直观性得出正确选项。此外,概率中两个事件的问题也可用图示法,即文氏图。
【考研数学复习有哪些概率计算的公式】相关文章:
考研数学概率有哪些复习重点12-15
考研数学概率复习有哪些方向01-26
考研数学复习常用的公式有哪些12-04
考研数学复习有哪些常用的公式12-21
考研数学概率统计的复习方向有哪些12-01
考研数学备考有哪些概率的复习要点12-21
考研数学需要熟悉概率计算的公式01-27
考研数学概率有哪些重要考点11-25
考研数学概率有哪些解题思路11-24