考研资讯 百文网手机站

考研数学拿高分的策略分析

时间:2021-06-09 12:05:05 考研资讯 我要投稿

考研数学拿高分的策略分析

  考研数学要拿高分就得有对策,我们需要抓住重点来进行复习。小编为大家精心准备了考研数学拿高分的秘诀,欢迎大家前来阅读。

考研数学拿高分的策略分析

  考研数学拿高分的攻略解读

  第一个“识”,就是我们要把考试大纲重头到尾进行梳理一下。我们要对大纲要求的知识,要进行识记,并且要熟练记忆。

  这个第一关,看似是最简单最基础,实际上是最难的。对于多数的考生而言,第一关往往是造成失败的主要原因。

  比如说数学一,由于考点要求的很多,很多考点,我们主要是记住了它的概念,这样的问题就会迎刃而解。我们不会的原因,并不是因为我们自身的能力不强或者是不够聪明。主要是对这部分内容,我们识记没有过。我们没有记住这些基本的概念和原理。

  第二个,就是要“全”,进行全面复习,不留死角。这个建议,主要是针对数学一同学而言的。那也就是说,从2016年的考试情况来看的话,如果我们盲目的猜重点,猜测考点,自己来揣摩哪些地方不考,我们就忽视了,而这些问题,恰恰就会考查出来。所以在后面有限的时间段里面,我们要进行全面的复习。对于平时没有掌握的遗留问题,要进行重点突破。

  第三个“识”,就是辨识能力,这个是个质的飞跃,一个能力提升的过程。辨识能力是数学的高层次,也就是说,我们能够识别这个问题是个什么样的问题。像概率里面,数学三独立重复实验。它是伯努利概型,还是几何分布,还是帕斯卡分布。

  第四个“美”,就是最高的阶段。很多数学家,他是把数学上升为美学,这是一个哲学范畴的一个概念。就是我们这个试卷,是要解答规范,形式要美观。从去年的阅卷情况来看,在批阅试卷的过程当中,我们在这个试卷里面反映的问题是非常突出的。主要在试卷中体现的问题有几个方面。

  第一个方面,就是时间很仓促。很多同学明显看出来最后的题,解答没有时间了,字迹很潦草。因此在解答试卷的过程当中,我们每个部分要注意时间的分配。

  第二个,就是突出的问题,基本概念不清楚。比如说,去年的概率论,这样一个问题,第一问呢,是告诉我们二维随机变量,在一个区域上服从均匀分布,要我们写出它的联合概率密度,所以考生都知道注意这个面积是3,但是就会有一半的考生不会把这个面积倒过来,得到联合概率密度。其实这样的问题,根本不是一个很难的问题,我们只要能够把这个面积倒过来,就会获得联合概率密度。所以,第二个问题,就体现了基本概念不清楚。

  第三个问题,在最后这一阶段,很多同学因为数学的难度,对自己没有信心,想要放弃数学,或者是避开数学,其实数学是能够获得高分,使自己与其他人拉开差距的一个中坚力量,也就是说,得数学者可以得天下,如果数学成绩好,他所占有的优势是极巨大的。所以,我们要相信自己的能力,我们数学要尽力争取高分。

  考研数学的复习错误

  1.重结论轻原理

  影响数学高分的内容,重点是在前面的客观题部分。客观题这部分,其中八个选择,六个填空,占有56分。如果客观题答的不好,这张试卷是很难获得高分的。客观题重在考查什么?也就是说,填空题重在考查计算。一般来讲,填空题相对比较简单。而选择题一般有干扰项,所以重在考查原理,而这一部分的分值呢是不容易获得的。所以对于原理我们还是要重视。

  比如说原函数存在定理。被积函数小fx要是连续,我们知道它的原函数是存在的。掌握到这个程度是不可以的。被积函数如果不连续,它有第一类或第二类的间断点,它有没有原函数呢?我们就要把这些理论问题要进行深入要搞清楚。再比如,像独立重复试验当中,事件概率的计算,这样概率的计算,我们不能仅仅掌握,n重伯努利实验,我们还要掌握几何概型问题,而更为重要的是帕斯卡分布。所以在2016年数学三的`填空题当中,就考了独立重复实验当中事件概率的计算。

  所以我们要在复习过程当中,不仅要抓住结论,更要把结论的过程搞清楚,它就是命题的重点内容和角度。

  2.重个别轻全面

  我们要对于全面进行综合能力的培养和提高。所以我们不能重个别轻全面。但是这要一分为二来看,也就是说,建议数学一的同学,只要考试大纲规定的内容,一定要全面复习,对于高频的考点,也一定要进行重点的保障把握,但是二和三,由于考试内容相对较少,所以它的重点,它的规律性是非常明显的,所以我们要重点掌握。在这个基础上进行全面复习。

  3.重模式轻思考

  必要的模式是需要掌握的,但是在使用这个模式的时候,我们怎样对这个模式进行认识,怎么样在遇到困难的时候,实行思路转化,怎么样在转化的过程中,遇到困难,我们进行逆向思考,这是一种能力的培养。在复习当中,我们要注意培养这方面的能力。第四个误区,就是重外力轻自身。特别是在每年这个阶段,是一个关键的阶段。

  很多考生呢,特别注重外力。外力只是进步的一个外部推动作用,我们更要调动自身的积极主动性。所以我们在后面的有限时间里面,虽然时间不多,但是可以肯定的说,时间是够用的。只要我们把这部分时间合理安排好,合理的规划好,要注意自身能力的培养和提高。我们在最后这个阶段,就能够提高自己的成绩。也就是说,从综合能力来看的话,如果根据个人目标,想达到国家的复试线,这是没有问题的,如果你要是考一些名校和一些热门的专业,就不是这样能过国家复试线的问题,那就是说要达到高分值这样的一个问题。

  考研数学一元函数微分学常考的题型

  ▶一元函数微分学有四大部分

  1、概念部分,重点有导数和微分的定义,特别要会利用导数定义讲座分段函数在分界点的可导性,高阶导数,可导与连续的关系;

  2、运算部分,重点是基本初等函的导数、微分公式,四则运算的导数、微分公式以及反函数、隐函数和由参数方程确定的函数的求导公式等;

  3、理论部分,重点是罗尔定理,拉格朗日中值定理,柯西中值定理;

  4、应用部分,重点是利用导数研究函数的性态(包括函数的单调性与极值,函数图形的凹凸性与拐点,渐近线),最值应用题,利用洛必达法则求极限,以及导数在经济领域的应用,如“弹性”、“边际”等等。

  常见考察题型

  1、求给定函数的导数或微分(包括高阶段导数),包括隐函数和由参数方程确定的函数求导。

  2、利用罗尔定理,拉格朗定理,拉格朗日中值定理,柯西中值定理证明有关命题和不等式,如“证明在开区间至少存在一点满足……”,或讨论方程在给定区间内的根的个数等。

  此类题的证明,经常要构造辅助函数,而辅助函数的构造技巧性较强,要求读者既能从题目所给条件进行分析推导逐步引出所需的辅助函数,也能从所需证明的结论(或其变形)出发“递推”出所要构造的辅函数,此外,在证明中还经常用到函数的单调性判断和连续数的介值定理等。

  3、利用洛必达法则求七种未定型的极限。

  4、几何、物理、经济等方面的最大值、最小值应用题,解这类问题,主要是确定目标函数和约束条件,判定所论区间。

  5、利用导数研究函数性态和描绘函数图像,等等。


【考研数学拿高分的策略分析】相关文章:

考研数学复习拿高分的策略11-25

考研数学高分的策略分析12-15

考研数学拿高分的策略有哪些12-18

考研数学考试拿高分的策略11-24

考研数学基础复习阶段拿高分的策略12-20

考研数学拿高分的备考计划12-16

考研数学拿高分的注意要点12-18

考研数学拿高分的复习关键12-15

考研数学复习拿高分的攻略12-18