报考指导 百文网手机站

考研数学的证明题应该如何做

时间:2021-06-09 11:12:43 报考指导 我要投稿

考研数学的证明题应该如何做

  证明题是考研数学中的大题,如果能够好好把握住,对于数学的成绩将是一个大提升。小编为大家精心准备了考研数学做证明题的技巧,欢迎大家前来阅读。

考研数学的证明题应该如何做

  考研数学做证明题的方法

  1.结合几何意义

  记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。

  知道基本原理是证明的基础,知道的程度(即对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。

  这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

  2.借助几何意义寻求证明思路

  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。

  这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

  3.逆推法

  从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。

  考研数学复习要注意的重点

  第一用夹逼准则计算极限

  第二导数应用

  第三一元函数积分的计算法

  第四不等式证明和方程根的问题

  第五一元积分应用

  第六多元函数的'级值与最值问题

  第七二重积分计算法

  第八,微分方程的解法

  第九级数求和(数一数三考,数二不考),第十三大共识,包括格林公式,高斯公式,斯托克斯公式,这是仅数一考

  第十一个等价向量组

  第十二个二次型化标准型

  第十三是相似理论

  第十四是数学二不要求了,叫做求分布,包括一位随机变量函数的分布和二位随机变量函数的分布

  第十五个做估计

  第十六个是求数字特征

  考研搞定数学选择题的方法

  方法1:直推法

  直推法即直接分析推导法。直推法是由条件出发,运用相关知识,直接分析、推导或计算出结果,从而作出正确的判断和选择。计算类选择题一般都用这种方法,其它题也常用这种方法,这是最基本、最常用、最重要的方法。

  方法2:反推法

  反推法即反向推导或反向代入法。反推法是由选项(即选择题的各个选项)反推条件,与条件相矛盾的选项则排除,相吻合的则是正确选项,或者将某个或某几个选项依次代入题设条件进行验证分析,与题设条件相吻合的就是正确的选项。

  方法3:反证法

  在选择题的4个选项中,若假设某个选项不正确(或正确)可以推出矛盾,则说明该选项是正确选项(或不正确选项)。选择先从哪个选项着手证明,须根据题目条件具体分析和判断,有时可能需要一些直觉。

  方法4:反例法

  如果某个选项是一个命题,要排除该选项或说明该命题是错误的,有时只要举一个反例即可。举反例通常是用一些常用的、比较简单但又能说明问题的例子。如果大家在平时复习或做题时适当注意积累一下与各个知识点相关的不同反例,则在考试中可能会派上用场。

  方法5:特例法(特值法)

  如果题目是一个带有普遍性的命题,则可以尝试采取一种或几种特殊情况、特殊值去验证哪些选项是正确的、哪些是错误的,或者哪些极有可能是正确的或错误的,从而做出正确的选择。

  特例法用于以下几种情况时特别有效:(1)条件和结论带有一定的普遍性时,通过取特例来确定或排除某些选项;(2)对于不成立或极有可能不成立的结论需用举反例的方法证明其是错误时;(3)对于一些难以作出判断的题,假设在特殊情况下来考察其正确与否。

  方法6:数形结合法

  根据条件画出相应的几何图形,结合数学表达式和图形进行分析,从而做出正确的判断和选择。这种方法常用于与几何图形有关的选择题,如:定积分的几何意义,二重积分的计算,曲线和曲面积分等。

  方法7:排除法

  如果可以通过一种或几种方法排除4个选项中的3个,则剩下的那个当然就是正确的选项,或者先排除4个选项中的2个,然后再对其余的2个进行判断和选择。

  方法8:直觉法

  如果采用以上各种方法仍无法作出选择,那就凭直觉或第一印象作选择。虽然直觉法不是很可靠,但可以作为一种参考,况且人的直觉或第一印象有时还是有一定效果的。

  在以上方法中,基本的方法是直推法,就是运用数学基本知识和方法进行分析判断,从四个选项中找出符合要求的那个选项;排除法是对所有考试中做选择题都适用的方法,是一种普遍性的方法;反例法是针对以数学命题作为选项的题目很有用和有效的一种方法,运用得当可以很快找出答案;数形结合法则是针对与几何图形有关的题目很有用的一种方法。


【考研数学的证明题应该如何做】相关文章:

考研数学证明题如何做12-04

考研数学该如何做证明题11-28

考研数学的证明题应该怎么做12-20

考研数学复习应该如何解证明题12-20

考研数学冲刺复习如何做证明题12-12

考研数学复习阶段如何做证明题12-05

考研数学冲刺阶段如何做证明题12-04

考研数学应该如何做题的分析12-07

考研数学复习应该如何做题12-16