考研资讯 百文网手机站

考研数学概率论首轮复习有哪些常见疑问

时间:2021-06-08 18:04:33 考研资讯 我要投稿

考研数学概率论首轮复习有哪些常见疑问

  我们在进行考研数学的概率论首轮复习时,有很多常见的疑问需要我们去了解清楚。小编为大家精心准备了考研数学概率论首轮复习的指导,欢迎大家前来阅读。

考研数学概率论首轮复习有哪些常见疑问

  考研数学概率论首轮复习常见的疑问

  1.概率的数理统计要怎么复习?什么叫几何型概率?

  答:几何型概率原则上只有理工科考,是数学一考察的对象,最近两年经济类的大纲也加进来了,但还没有考过,数学三、数学四的话虽然明确写在大纲里,还没有考。明年是否可能考呢?几何概率是一个考点,但不是一个考察的重点。我个人认为一是它考的可能性很小,如果考也是考一个小题,或者是选择题或者是填空题或者在大题里运用一下概率的模式,就是一个事件发生的概率是等于这个事件的度量或者整个样本空间度量的比。

  这个度量的话指的是面积,一维空间指的是长度,二维空间指的是面积,三维空间指的是体积。所以几何概率指的是长度的比、面积的比和体积的比。重点是面积的比,是二维的情况。

  何概率其实很简单,是一个程序化的过程,按这四个步骤你肯定能做出来。第一步把样本空间和让你求概率的事件用几何表示出来。第二步既然是几何概率那就是图形,第二步把几何图形画出来。第三步你就把样本空间和让你求概率的事件所在的几何图形的度量,就是刚才所说的面积或者体积求出来。第三步代公式。以前考过的几何概率的题度量的计算都是用初等的方法做,我推测下次考的话,可能会难一点的。比如说用意项,面积可能用到定积分或者重积分计算,把概率和高等数学联系起来。

  关于第二个问题,概率统计怎么复习,今年的考试分配很不正常,明年不会是这样的情况。我想明年数学一(统计)应该考一个八、九分的题是比较适中的。从今年考试中心的样题统计这一块是九分。数学三(统计)应该八分左右,统计这一块大家不要放弃,明年可能会考,分数应该是八、九分的题。

  至于复习,它的内容占了四分之一的样子。但是这一部分的题相对于概率题比较固定,做题的方法也比较固定,对考生来说比较好掌握,但这部分考生考得差,可能很多学校没有开这门课,或者开的话讲得比较简单,所以一些同学没有达到考试的水平。其实这部分稍微花一点时间就可以掌握了。主要就是这几块内容一是样本与抽样分布,就是三大分布搞清楚,把他们的结构搞清楚,把统计上的分布搞清楚。

  然后是参数估计、矩估计、最大似然估计、区间估计、三种估计方法,三个评价标准,无偏性、有效性、一致性,重点是无偏性的考查,因为它是期望的计算,其次是有效性。一致性一般不会考,考的可能性很小。这三种估计方法重点也是前面两种,矩估计、最大似然估计,区间做了限制,考了很少,历年考试的情况也就是代代公式。

  最后一部分是假设检验这部分,这一部分我个人推测明年有可能考一个概念性的小题。一是了解U检验统计量、T检验统计量、卡方检验统计量,把这三个检验统计量的分布搞清楚。另外假设检验的思想和四个步骤了解一下就可以了。我想这部分考生少花一点时间,统计这个题是没有问题的,重点就是参数估计,就是三种估计方法,三个评价标准,重点在那个地方。

  2.概率的公式、概念比较多,怎么记?

  答:我们看这样一个模型,这是概率里经常见到的,从实际产品里面我们每次取一个产品,而且取后不放回去,就是日常生活中抽签抓阄的模型。现在我说四句话,大家看看有什么不同,第一句话“求一下第三次取到十件产品有七件正品三件次品,我们每次取一件,取后不放回”,下面我们来求四个类型,第一问我们求第三次取得次品的概率。

  第二问我们求第三次才取得次品的概率。第三问已知前两次没有取得次品第三次取到次品。第四问不超过三次取到次品。大家看到这四问的话我想是容易糊涂的,这是四个完全不同的概率,但是你看完以后可能有很多考生认为有的就是一个类型,但实际上是不一样的。

  先看第一个“第三次取得次品”,这个概率与前面取得什么和后面取得什么都没有关系,所以这个我们叫绝对概率。第一个概率我想很多考生都知道,这个概率应该是等于十分之三,用古代概率公式或者全概率公式求出来都是十分之三。这个概率改成第四次、第五次取到都是十分之三,就是说这个概率与次数是没有关系的。所以在这里我们可以看出,日常生活中抽签、抓阄从数学上来说是公平的。

  拿这个模型来说,第一次取到和第十次取到次品的概率都是十分之三。下面我们再看看第二个概率,第三次才取到次品的概率,这个事件描述的是绩事件,这是概率里重要的概念,改变表示同时发生的概率。但是这个与第三次的概率是容易混淆的,如果表示的可以这样表述,如果用A1表示第一次取到次品,A2表示第二次取到次品,A3是第三次取到次品。

  如果A表示第一次不取到次品,B表示第二次不取到次品,C表示第三次不取到次品,求ABC绩事件发生的概率。第三问表示条件概率,已知前两次没有取到次品,第三次取到次品P(C|AB),第三问求的就是一个条件概率。我们看第四问,不超过三次取得次品,这是一个和事件的概率,就是P(A+B+C)。从这个例子大家可以看出,概率论确实对题意的理解非常重要,要把握准确,否则就得不到准确的答案。

  3.我概率这块掌握的不够扎实,复习很困难,我应该怎样才能更好的复习概率这部分内容?

  答:概率这门学科与别的学科是不太一样的,首先我建议这位同学你可以看一下教育部考试中心一本杂志,专门出了一个针对研究生考试的书,这个里面请我写了一篇文章,里面我举很多例子,你看了之后有一个详细复习方法。概率这门学科与概率统计、微积分是不一样的,它要求对基本概念、基本性质的理解比较强,有个同学跟我说高等数学不存在把题看不懂的问题,但是概率统计的题尤其文字叙述的时候看不懂题,从这个意义上来说同学平常复习时候,只要针对每一个基本概念,要把它准确的理解,概念要理解准确,通过例子理解概念,通过实际物体理解概念。

  例如:比如我们一个盒子一共有十件产品,其中三件次品,七件正品,我们做一个实验,每次只取一件产品,取之后不再放回去,现在我提两个问题:一个是第三次取的次品是什么事件,这个事件就是积事件,第一次没有取到次品,第二次没有取到次品,第三次是取到次品,求这么一个事件的概率,但是换一个问题,我说你求前面两次没有取到次品情况下,第三次取到次品的概率,这个就不是积事件了,我第二个问题是知道了前面两次没有取到次品,这个信息已经知道了,然后问你第三次取到次品概率是多少,这是条件概率,这个信息已经知道了,另外一个事件发生的概率,这叫条件概率,这是容易混淆的。还有绝对概率,拿我们刚才举的例子来讲,如果我让你求第三次取到次品是什么概率,那是绝对事件的概率,这和前面两个又不一样。

  举这个例子提醒考生复习时候把这些基本概念搞清楚了,把公式把握了,这个就比较容易了。跟微积分比较起来这里没有什么公式,公式很少。所以我们把基本概念弄清楚以后,计算的技巧比微积分少得多,所以有同学跟我说,他说概率统计这门课程要么就考高分,要么考低分,考中间分数的人很少,这就说明了这种课程的特点。

  4.概率的公式非常难背,有什么好方法吗?

  答:背下来是基本的要求,概率的公式并不多,但是概率的公式和高等数学的公式相比,仅仅记住它是不够的,比如给一个函数求导数,你会做,因为你知道是求导数,概率问题,比如全概率公式,考试的时候从来没有哪一年是请你用全概率公式求求某概率,所以从分析问题的层面来说概率的要求高一点,但是从计算技巧来说概率的技巧低一些,所以我建议大家结合实际的例子和模型记它。比如二向概率公式,你可以这么记它,记一个模型,把一枚硬币重复抛N次,正面冲上的概率是多少呢?这个公式哪一个符号在实际问题里面是什么东西,这样才是在理解的基础上记忆,当然就不容易忘记了。

  5.关于数理统计先阶段复习应该抓哪些?

  答:考试要注意,只有数学1和数学3的同学要考数理统计,按照以前考试数学1一般来说考三分之一分数的题,数学3是四分之一,但是仅仅是一个很例外的情况,2003年数学1考了16分的数理统计,但是今年没有考这部分,今年考试这个地方的命题是有一点有失偏颇,我个人的看法为了避免这样的情况,所以这个地方一定要看,一般要考8分左右的题是比较合适的,到底考什么,我可以把这个范围缩的比较小,考这么几种题型,第一个是求统计量的数字特征或者是统计量的分布,统计量大家知道就是样本的函数,样本就是X1X2-Xn,就是期望、方差、系方差,相关系数等等,求统计量的数字特征。

  第二个题型,统计量既然是随机变量,当然可以求统计量的分布,2001年数学3是考了,2002年数学3考了,所以这个地方也是重要的题型。其次第三种题型是参数估计,你要会求。要考你背两到三个区间估计的公式就可以了,所以为什么这个地方考的次数最多,每一种方法你都要会做。第四种题型就是对估计量的好坏进行评价,估计是无偏是有效的还是抑制的。2003年就考了一个大题。

  另外第五种题型就是假设间接这个地方,这么年以来只考过两次,而且从99年以来练习五年这一章是没有考,但是也正音连续五年没有考,我个人估测2004年在这个上面考一个小题的可能是非常大的,我想同学们这部分花一点点时间看一看它,可能考一个小题,考一个什么题,就是把统计量写出来,你会不会把分布写出来,以填空的'方式。另外一种考法,它的只对什么进行检验,对什么参数进行检验,你把统计参数写出来。第三种方法,设计一个问题,把架设检验的十个步骤做出来,第一个步骤是提出架设,第二步写出检验统计量。这个部分也不会出一个大题,应该是以小题的形式出现。

  6.数学一概率和统计一般是怎样的分值比例?重点分别是什么?

  答:我们1997年实行新大纲以后,除了1997年没有考,数学一从1998年到今年每一年都考到数理统计这块内容,也可以更多的情况下通过大题形式考,这里头大家复习时候应该稍微注意一下,数理统计它的公式特别多,但是本质上全部概括起来,三个动态总体的抽样分布,当总体方向是未知的时候,我们这几年考题表面上考数理统计的问题,有相当一部分考数理统计它在具体计算过程里头的期望和方差的计算问题。所以经常把数理统计和我们数字特征结合起来考,这种情况我认为没有必要过于区分数理统计占怎样的分值比例,本身都是紧密相连的。

  7.数理统计中考试重点是什么?参数估计占多大比重?

  答:参数估计这部分它占数理统计的一多半内容,参数估计这块应该是最重要的。统计里面第一章就是关于样本还有统计量分布这部分,这部分就是求统计量的数字特征,统计量是随机变量。统计里面有什么题型?一个参数估计,一个求统计量数字特征或者求统计量的分布,统计量是随机变量,任何随机变量都有分布。自然会有这样的题型。求统计量的数字特征,求统计量的分布,然后参数估计,然后估计的标准。统计这个内容对大家来说应该是比较好掌握的,题型比较少,你比较好把这个题做好。

  8.数一中假设检验怎么考?参数估计中区间估计的公式是否都要记住?也就是统计量及其分布这些公式很复杂如何更好记忆,历年考试出现的好象不是特别多,今年是否会有变化?

  答:区间估计不是考试重点,属于最低层次的,你只要知道两到三个区间公式就可以了,以前只考过前面两个,你多记一个留有一些余地,这个地方要求比较低,复杂的公式你不一定非得记住。

  考研数学冲刺的解题定思路

  第一部分 《高数解题的四种思维定势》

  1.在题设条件中给出一个函数f(x)二阶和二阶以上可导,"不管三七二十一",把f(x)在指定点展成泰勒公式再说。

  2.在题设条件或欲证结论中有定积分表达式时,则"不管三七二十一"先用积分中值定理对该积分式处理一下再说。

  3.在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则"不管三七二十一"先用拉格朗日中值定理处理一下再说。

  4.对定限或变限积分,若被积函数或其主要部分为复合函数,则"不管三七二十一"先做变量替换使之成为简单形式f(u)再说。

  第二部分 《线性代数解题的八种思维定势》

  1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。

  2.若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。

  3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。

  4.若要证明一组向量a1,a2,...,as线性无关,先考虑用定义再说。

  5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。

  6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。

  7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。

  8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。

  第三部分《概率与数理统计解题的九种思维定势》

  1.如果要求的是若干事件中"至少"有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式。

  2.若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式。

  3.若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。关键:寻找完备事件组。

  4.若题设中给出随机变量X ~ N 则马上联想到标准化X ~ N(0,1)来处理有关问题。

  5.求二维随机变量(X,Y)的边缘分布密度的问题,应该马上联想到先画出使联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而Y的求法类似。

  6.欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联想到二重积分的计算,其积分域D是由联合密度的平面区域及满足Y≥g(X)或(Y≤g(X))的区域的公共部分。

  7.涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作(0-1)分解。

  8.凡求解各概率分布已知的若干个独立随机变量组成的系统满足某种关系的概率(或已知概率求随机变量个数)的问题,马上联想到用中心极限定理处理。

  9.若为总体X的一组简单随机样本,则凡是涉及到统计量的分布问题,一般联想到用分布,t分布和F分布的定义进行讨论。

  考研数学冲刺线性代数常考的内容

  ▶一、行列式部分,强化概念性质,熟练行列式的求法

  在这里我们需要明确下面几条:行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误;行列式的计算方法中常用的是定义法,比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。另外范德蒙行列式也是需要掌握的;行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。

  ▶二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用

  通过历年真题分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵、秩,在课堂辅导的时候会重点强调.此外,伴随矩阵的矩阵方程以及矩阵与行列式的结合也是需要同学们熟练掌握的细节。涉及秩的应用,包含矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价,对矩阵的秩与方程组的解之间关系的分析,备考需要在理解概念的基础上,系统地进行归纳总结,并做习题加以巩固。

  ▶三、向量部分,理解相关无关概念,灵活进行判定

  向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。如何掌握这部分内容呢?首先在于对定义概念的理解,然后就是分析判定的重点,即:看是否存在一组全为零的或者有非零解的实数对。基础线性相关问题也会涉及类似的题型:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。

  ▶四、线性方程组部分,判断解的个数,明确通解的求解思路

  线性方程组解的情况,主要涵盖了齐次线性方程组有非零解、非齐次线性方程组解的判定及解的结构、齐次线性方程组基础解系的求解与证明以及带参数的线性方程组的解的情况。通解的求法有两种,若为齐次线性方程组,首先求解方程组的矩阵对应的行列式的值,在特征值为零和不为零的情况下分别进行讨论,为零说明有解,带入增广矩阵化简整理;不为零则有唯一解直接求出即可。若为非齐次方程组,则按照对增广矩阵的讨论进行求解。

  ▶五、矩阵的特征值与特征向量部分,理解概念方法,掌握矩阵对角化的求解

  矩阵的特征值、特征向量部分可划分为三给我板块:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相关题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、有关实对称矩阵的问题。

  ▶六、二次型部分,熟悉正定矩阵的判别,了解规范性和惯性定理

  二次型矩阵是二次型问题的一个基础,且大部分都可以转化为它的实对称矩阵的问题来处理。另外二次型及其矩阵表示,二次型的秩和标准形等概念、二次型的规范形和惯性定理也是填空选择题中的不可或缺的部分,二次型的标准化与矩阵对角化紧密相连,要会用配方法、正交变换化二次型为标准形;掌握二次型正定性的判别方法等等。


【考研数学概率论首轮复习有哪些常见疑问】相关文章:

考研数学概率论首轮复习常见疑问12-22

考研数学概率论首轮复习的常见疑问11-24

考研数学概率论首轮复习的疑问12-18

考研数学首轮复习有哪些原则10-30

考研数学复习常见的问题有哪些11-10

考研数学首轮复习有什么方法11-10

考研数学首轮复习的原则12-05

考研数学复习有哪些常见问题11-25

考研数学备考首轮复习的策略12-12