考研冲刺线代矩阵部分有哪些常考题型
我们在进行考研冲刺阶段的时候,关于线代矩阵的复习,我们需要抓住它常考的题型来进行学习。小编为大家精心准备了考研冲刺线代矩阵常考的知识点,欢迎大家前来阅读。
考研冲刺线代矩阵常考的题型
综述:矩阵是线性代数中最基本的内容,线性代数中绝大多数运算都是通过矩阵进行的。本章相关的概念和运算贯穿整个学科,在后续章节中有很重要的运用。考试直接考查本章的知识点以选择题或填空题为主,平均每年1到2道。但实质上,线性代数中基本上没有题目不涉及到矩阵以及矩阵的运算的。因此,本章的复习效果在很大程度上决定了整个学科复习的成败。
本章的主要知识点有:矩阵的概念,矩阵的各种运算及其法则,逆矩阵的概念,伴随矩阵的概念,伴随矩阵和逆矩阵的关系以及矩阵可逆的充要条件,初等变换与初等矩阵,利用初等行变换计算逆矩阵,矩阵的等价,矩阵的秩。复习时要以矩阵的运算为线索,系统把握所有知识点。矩阵的运算中,核心的是矩阵的乘法,要特别注意与乘法相关的各种特殊的运算规律:如交换律和结合律都不成立。本章考查最多的考点是逆矩阵,这一部分可以从三个方面来把握:一是它的定义,二是它与伴随矩阵的关系,三是利用初等变换计算逆矩阵的方法。最后,对于矩阵的秩,要着重理解它的定义,理解它和行列式以及矩阵的可逆性的关系。跨考教育数学教研室张老师认为,本章常考的题型有:1.对矩阵的运算的考查,2.对逆矩阵的考查,3.初等变换,4.矩阵方程,5.矩阵的秩,6.矩阵的分块。
考研数学线性代数的命题规律
线性代数一共六章的内容。其中第一章行列式,它在整张试卷中所占比例不是很大,一般以填空题和选择题为主,但它是必考内容,即便没有单独考查的题目,也会在其它的试题中给以考查,如求特征值就是计算相应的行列式。行列式的重点内容是掌握计算行列式的方法,同学们要掌握降阶法求行列式,以及其它的像爪型、三对角、范德蒙、行和或列和相等的行列式的求法。矩阵是后面各章节的基础。矩阵的概念、运算及理论贯穿线性代数的`始末。这部分考点较多,像逆矩阵、伴随矩阵、转置矩阵、矩阵的幂、矩阵的行列式等概念的定义、性质、运算等等是每年考研的重点内容,同学们在复习的时候一定要注意归纳总结才可能掌握好。向量组的线性相关性是线性代数的重点也是考研的难点,大家复习的时候一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定方法并能灵活应用,还要弄清楚线性表出、向量组的秩及线性方程组等之间的联系,从各个侧面加强对线性相关性的理解。历年考题中,方程组是每年必考的题目,这也是线性代数部分考查的重点内容。要掌握齐次和非齐次线性方程组的解的判定定理,能够熟练求解线性方程组。这部分内容是重点考查解答题的章节。特征值和特征向量也是考研的重点内容之一,题多分值大,共有三部分内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相对而言,这部分计算量是比较大的,复习的时候一定要加强练习。由于二次型与它的实对称矩阵是一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,只要正确写出二次型所对应的实对称矩阵,就可以利用相似对角化的方法解决二次型的问题了。解线性方程组和矩阵相似对角化是每年两道大题最容易考查的地方。
线性代数的知识点比较多而且比较松散,而考研数学试题的综合性非常强,所以大家在复习的时候一定要注意总结常用的结论、性质,例如伴随矩阵的秩、矩阵相乘的秩等等,抓住重点,解决难点,只要我们把握住了命题规律,就一定能取得线代的高分,并最终取得考研数学的胜利。
考研数学大纲解析:极限与导数
一、极限
极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。极限的计算是核心考点,考题所占比重最大。熟练掌握求解极限的方法是得高分的关键。
极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。
四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效;夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限。
与极限计算相关知识点包括:
1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左、右极限,分段函数的连续性问题关键是分界点处的连续性,或按定义考察,或分别考察左、右连续性;
2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数的定义直接计算或检验,存在的定义是极限存在,求极限时往往会用到推广之后的导数定义式;
3、渐近线(水平、垂直、斜渐近线);
4、多元函数微分学,二重极限的讨论计算难度较大,多考察证明极限不存在。
二、导数
求导与求微分每年直接考查的知识所占分值平均在10分到13分左右。常考题型:(1)利用定义计算导数或讨论函数可导性;(2)导数与微分的计算(包括高阶导数);(3)切线与法线;(4)对单调性与凹凸性的考查;(5)求函数极值与拐点;(6)对函数及其导数相关性质的考查。
对于导数与微分,首先对于它们的定义要给予足够的重视,按定义求导在分段函数求导
中是特别重要的。应该熟练掌握可导、可微与连续性的关系。求导计算中常用的方法是四则运算法则和复合函数求导法则,一元函数微分法则中最重要的是复合函数求导法及相应的一阶微分形式不变性,利用求导的四则运算法则与复合函数求导法可求初等函数的任意阶导数。幂指函数求导法、隐函数求导法、参数式求导法、反函数求导法及变限积分求导法等都是复合函数求导法的应用。
导数计算中需要掌握的常见类型有以下几种:
1、基本函数类型的求导;
2、复合函数求导;
3、隐函数求导,对于隐函数求导,不要刻意记忆公式,记住计算方法即可,计算的时候要注意结合各种求导法则;
4、由参数方程所确定的函数求导,不必记忆公式,要掌握其计算方法,依据复合函数求导法则计算即可;
5、反函数的导数;
6、求分段函数的导数,关键是求分界点处的导数;
7、变上限积分求导,关键是从积分号下把提出;
8、偏导数的计算,求偏导数的基本法则是固定其余变量,只对一个变量求导,在此法则下,基本计算公式与一元函数类似。导数的计算需要考生不断练习,直到对所有题目一见到就能够熟练、正确地解答出来。
【考研冲刺线代矩阵部分有哪些常考题型】相关文章:
考研数学常考的题型有哪些11-07
考研英语有哪些常考新题型11-15
考研英语常考的新题型有哪些12-18
高考数学有哪些常考的题型01-27
考研英语各个题型有哪些常考知识点01-26
考研数学高数复习有哪些常考内容及题型12-01
雅思口语部分常考单词有哪些11-03
考研英语常考的短语有哪些11-20
考研数学线代的高频考点有哪些12-11