考研数学备考应该怎么复习
我们在进行考研数学的备考时,应该找到属于自己的复习方法。小编为大家精心准备了考研数学复习技巧,欢迎大家前来阅读。
考研数学复习方法
要对题目有感觉
学习过程中,考生总是会遇到各种题型,方法多样,大家光理解了方法不可以,还必须能够对题目有感觉,在以后的学习中如果还遇到相同的题型,要能反映到用什么方法。这就需要大家对于解题方法的沉淀。辅导专家建议考生准备归纳本,把相关题型整理在一个集合中,这样慢慢下来,就容易发现题目有何特点的时候采用什么方法。这对于今后的复习也是极有帮助的。其实同学们从复习初期就应该开始为自己准备两个笔记本,一本用于专门整理自己在复习当中遇到过的不懂的知识点,并且将一些容易出错、容易发生混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,定会留下非常深刻的印象,避免遗忘出错;另一本用来整理错题,同学们在复习全程中会遇到许多许多不同类型的题目,对自己曾经不会做的、做错了的题目不要看过标准答案后就轻易放过,应当及时地把它们整理一下,在正确解答过程的后面简单标注一下自己出错的原因、不会做的症结,以后再回头看的时候一定会起到很大的帮助,这也是循序渐进稳步提高解题能力的关键环节。
答题要有层次
考研数学题目有三种题型:选择题、填空题、解答题。选择题可供选用的方法有:排除法,特殊值法,反例法,直接求解法等。一般来说,前三种方法会比直接求解简单快速,但这依赖于考生对所考查知识的熟悉程度及错误选项的干扰性强度。填空题只需得到最终结果,与计算过程及所用方法无关,题目难度与运算量也不太大,无需注重过程,但计算中力求准确无误,以免出现方法对而结果错失分的风险。解答题注重方法与运算、推理步骤,对于可选有多种途径解题的情况下,优先选择易叙述清楚、过程简洁、运算量小的一种。因为解答题按步得分,对每一步推理或运算,必须写清所用原理或推理因果关系。辅导专家提醒考生,大家在做题时要注意不同的题目按照不同的方法去做。
考研数学复习解决难题的秘诀
消极迎战,效率低下
“考研难,考研数学更难”的论调深入人心,不少考生爱尚未了解考试内容和题型时,就已经对数学产生了畏难情绪,这直接导致在复习中就是消极应付,而非积极准备,“过线就行,差不多就可以了”成为他们普遍的目标。考研辅导专家提醒考生,,要想学好数学,首先要克服惧怕心理,树立必胜的信心,化消极被动为主动,才可以在数学的学习和解题中体会到真正的乐趣。
只重技巧,不重理解
有的同学在复习过程中特别注重技巧,这是一种投机心理的表现。学习是一件很艰苦的工作,很多学生片面追求别人现成的方法和技巧,殊不知方法和技巧是建立在自己对基本概念和基础知识深入理解的基础上的,每一种方法和技巧都有它特定的适用范围和使用前提。考研辅导专家提醒考生,单纯的模仿是绝对行不通的,在复习过程中,大家必须放弃投机心理,塌实的透彻理解每一个方法的来龙去脉。
把看题等同于做题
由于时间原因,很多人买了资料后只是匆匆茫茫的看书而不动手练习,造成眼高手低。数学是一门严谨的学科,容不得半点纰漏,在我们还没有建立起来完备的知识结构之前,一带而过的复习必然会难以把握题目中的重点,忽略精妙之处。考研辅导专家提醒考生,通过动手练习,还能规范答题模式,提高解题和运算的'熟练程度,要知道三个小时那么大的题量,本身就是对计算能力和熟练程度的考察,而且现在的阅卷都是分步给分的,怎么作答有效果,这些都要通过自己不断的饿摸索去体会。
考研高数复习重点知识:微分方程与无穷级数
一、微分方程
微分方程可视为一元函数微积分学的应用与推广。该部分在考试中以大题与小题的形式交替出现,平均每年所占分值在8分左右。常考的题型包括各种类型微分方程的求解,线性微分方程解的性质,综合应用。
对于该部分内容的复习,考生首先要能识别各种方程类型(一阶:可分离变量的方程、齐次方程、一阶线性方程、伯努利方程(数一、二)、全微分方程(数一);高阶:线性方程、欧拉方程(数一)、高阶可降阶的方程(数一、二)),熟悉其求解步骤,并通过足量练习以求熟练掌握;在此基础上还要具备数学建模的能力——能根据几何或物理背景,建立微分方程。
另外,有几点需提醒考生:
1. 解微分方程主要考查考生计算积分的能力,而实际应用则对考生的综合能力提出较高要求,考生需结合练习把“解方程”和“列方程”的能力练好。
2. 非基本类型的方程一般都可通过变量替换化为基本类型。
3. 考生需弄清常见的物理量、几何量与微分、积分的关系。
二、无穷级数
级数可视为微积分的综合应用。该部分是数一、数三的必考内容,分值约占10%。常考的题型有:常数项级数的收敛性,幂级数的收敛半径和收敛域,幂级数展开,幂级数求和,常数项级数求和以及傅里叶级数。其中幂级数是重点。
结合考试分析,建议考生从以下方面把握该部分内容:
1. 常数项级数
理解其收敛的相关概念并掌握各种收敛性判别法。
2. 幂级数
考试有三方面的要求:幂级数收敛域的计算,幂级数求和,幂级数展开。考生应通过一定量训练使自己具备这三方面的能力——给定幂级数,准确计算其收敛半径进而得到收敛域,能求其和函数,能将一个简单函数在指定点展开成幂级数。
3.傅里叶级数
考试出现频率和考试要求均较低,掌握傅里叶系数的求法,再了解狄利克雷定理的内容即可。
如何有效地复习考研数学?如果我们也视其为一道数学题,我想我们应该明白:我们要做微分运算——拿着放大镜把每个考点弄清,也要做积分运算——持续地投入,积跬步以至千里;我们要有严谨的态度——一张数表里有一个数不同结果就变了,还要有灵活的思维——于点、线、面,数、表、空间,常量、变量、随机变量间自由游弋;面对逝去的光阴不要悔恨——函数都可以不单调,人却要让过去决定未来吗,面对不如意的现状要接纳——作为考生,我们无权更改微分方程的初始条件,我们能做的是接受它,把题漂亮地解出来。
【考研数学备考应该怎么复习】相关文章:
考研数学应该怎么开始复习11-06
考研数学三应该怎么复习12-01
考研数学备考该怎么复习12-20
考研数学备考怎么开始复习12-16
考研数学备考怎么复习指导11-03
考研英语备考应该如何复习11-16
考研数学的概率论应该怎么复习11-06
考研数学基础差该怎么复习备考11-08
考研数学应该怎样复习07-11