考研数学单选与证明题经典解题技巧
我们在准备考研数学的复习时,需要把一些单选与证明题找到解题技巧。小编为大家精心准备了考研数学单选和证明题经典解题秘诀,欢迎大家前来阅读。
考研数学单选和证明题经典解题方法
一、单选题巧解技巧总结为五种方法:
第一种:推演法。提示条件中给出一些条件或者一些数值,你很容易判断,那这样的题就用推演法去做。推演法实际上是一些计算题,简单一点的计算题。那么从提示条件中往后推,推出哪个结果选择哪个。
第二种:赋值法。给一个数值马上可以判断我们这种做法对不对,这个值可以加在给出的条件上,也可以加在被选的4个答案中的其中几个上,我们加上去如果得出和我们题设的条件矛盾,或者是和我们已知的事实相矛盾。比方说2小于1就是明显的错误,所以把这些排除了,排除掉3个最后一个肯定是正确的。
第三种:举反例排除法。这是针对提示中给出的函数是抽象的函数,抽象的对立面是具体,所以我们用具体的例子来核定,这个跟我们刚才的赋值法有某种相似之处。一般来讲举的范例是越简单越好,而且很多考题你只要简单的看就可以看出他的错误点。
第五种:类推。从最后被选的答案中往前推,推出哪个错误就把哪个否定掉,再换一个。我们推出3个错误最后一个肯定是正确的。后面三种方法有些相似之处,类推法这种方法是费时费力的,一般来讲我们不太用。
总结:经常进行自我总结,错题总结能逐渐提高解题能力。大家可以在学完每一章后,自己通过画图的形式回忆这章有哪些知识点,有哪些定理,他们之间有些什么联系,如何应用等;对做错的题分析一下原因:概念不清楚、定理用错了还是计算粗心?数学思维方法是数学的精髓,只有对此进行归纳、领会、应用,才能把数学知识与技能转化为分析问题、解决问题的能力,使解题能力“更上一层楼”。
二、证明题总结为三大解题方法:
1.结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。
知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的 存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。
2.借助几何意义寻求证明思路。
一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的`是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及 y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。
3.逆推法
从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所 举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设 F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要证的不等式。
对于那些经常使用如上方法的考生来说,利用三步走就能轻松收获数学证明的12分,但对于从心理上就不自信能解决证明题的考生来说,却常常轻易丢失12分,后一部分同学请按“证明三步走”来建立自信心,以阻止考试分数的白白流失。
考研数学概率统计的知识点
一、随机事件和概率
考试要求
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式。
3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。
二、随机变量及其分布
考试要求
1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率。
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用。
3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为
5.会求随机变量函数的分布。
三、多维随机变量及其分布
考试要求
1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率。
2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件。
考研数学如何把握重要阶段的复习
1.高等数学:分为5个知识模块,1一元微积分学;2多元微积分学;3曲线、曲面积分;4无穷级数;5微分方程。这里面的曲线、曲面积分是数一的同学特有的,其他内容是所有考数学的同学都要考查的。
2.线性代数:分为3个知识模块,1行列式和矩阵;2向量和线性方程组;3特征值、特征向量和二次型。线性代数部分从考纲来看各个卷种的差别不大,近些年的变化也不大,是考研数学相对稳定的一部分考查内容。
3.概率论与数理统计:分为3个知识模块,1概率、概率基本性质及简单的概型,2随机变量及其分布与数字特征,3统计基本概念、参数估计及假设检验,这部分是数二的同学不要求的,而数一和数三大纲的要求还是有些差距的,比如数一要求假设检验而数三不要求。
针对以上11个模块,建议大家可以从以下四个不同层次着手复习:
第一个层次是概念、性质、公式、定理及相关知识之间的联系、区别的归纳与总结。我们的方法是:首先按照自己认为的重要到次重要的顺序进行回忆,之后比照考试大纲所规定的考试内容,看自己有哪些遗漏了,从而形成完整的知识网络。我们还要对遗漏的知识点进行分析,要搞清楚这个知识点是由于和这个小的知识模块关系不紧密而没有联系起来,还是自己在复习过程中忽略了。对于前一种情况大家不用放在心上,只要看一看这个知识点说的是什么意思就可以了,比如:在我们回忆一元微积分学时,如果没想起来曲率的概念,这关系不是很大,要知道和整个知识模块相对游离的知识点往往不是考研的重点,我们知道即可。可是对于那些本来很重要的知识点由于自己的忽视而没有想起来,这时我们要高度的重视起来了,这些知识应该是自己的相对弱点和盲点,对这些知识点的复习是我们是否能考出好成绩的关键!对这些知识点我们要想尽一切办法去理解,去练习,直到掌握了为止!在这一层次中大家要知道,考研中的重要的考点往往是不同部分的节点,这样的知识点可能联系着两个或多个的概念,是起桥梁作用的知识。
第二个层次是对题型的归纳总结。做完第一个层次的总结,我们只是把考研要考的一些小的知识点形成了一个知识的网络图,但我们还不知道考研是从什么角度,如何考查大家,这时我们要进行第二个层次的总结。我们归纳总结的方法是先根据自己看过的和做过的辅导材料凭记忆总结出若干的题型,之后比照自己所看的材料看自己总结的是否能涵盖复习材料中大部分的例题,另外,大家还可以参照专门讲题型的书,用自己总结的题型和复习材料上的进行对照,通过对照充实自己总结出来的题型。
第三个层次是对题型解法的归纳总结。有了第二个层次的归纳总结,我们对考研数学的畏惧心理都消失了,你已经知道了考研数学可能考你的方式、方法和角度了,现在要做的是对总结的题型进行解题方法的总结了。我们的方法是首先根据自己做过的一种题型的若干例题总结出典型的解题思路形成有效的解题程序和过程。对于一种题型我们可以从不同的例题中归纳出多种的方法和思路。之后,我们对照复习材料进行充实和改造自己归纳的解题思路和方法,尽可能多的把能用的思路和方法总结出来。
第四个层次是解题思路的升华。有了第三个层次的归纳总结,我们对自己遇到的题目就心中有底了,我们已经知道,一般的题目只要按照自己总结的方法一种一种的去试,基本上能把题目做出来,只不过我们的解题的速度不快,这时侯我们需要在第三个层次的基础上进行思路的升华,找到最好的对付一类题型的解题方法,提高我们的解题速度!我们的方法是在自己总结的方法中找最快捷和最适合自己发挥的解题思路,之后去找些有关题型的复习材料做些比较,再看看自己的方法和这些材料的方法哪个更适合自己。
相信通过以上总结,一定会让大家对考研数学的命题思路有更深入的把握,最后祝大家复习顺利,金榜题名!
【考研数学单选与证明题经典解题技巧】相关文章:
考研数学冲刺有哪些单选与证明题解题技巧12-11
考研数学单选题和证明题有哪些解题技巧12-07
考研数学 证明题06-23
2015考研数学证明题06-23
考研数学证明题解题的方法12-08
考研数学证明题答题详解12-08
考研数学证明题的答题技巧12-08
考研数学证明题解答的步骤11-24
数学考研解题技巧06-30