考研数学阶段划分复习计划
我们在进入考研数学的复习阶段时,需要划分好自己的学习计划。小编为大家精心准备了考研数学阶段划分复习规划,欢迎大家前来阅读。
考研数学阶段划分复习建议
一、阶段划分建议
(1)起跑准备阶段,搜集资料,制定计划;
(2)系统的考研复习阶段,可以主要以原来大一年时用过的教材为复习依据,应该在8月底能够结束,自己要排好进度表,限时完成。参加辅导班的同学一定要向辅导老师索要进度安排表,再配合老师的进度具体制订自己的复习计划和进度。
很多学生都有这样的感觉“看看书好像都懂,做做题觉得很难”。其原因有两点:一个原因是实际上没真正把书读懂,有一些同学看数学书像看小说一样,一知半解地一页一页往后翻,没能做到融会贯通,怎么样才算真正看懂,最简单的方法,就是边看书,边动笔,边思考分析。另一原因是做题的数量还不够,也就是说考研复习的第一阶段和下面的第二阶段在时间上不能截然分开;虽应有序进行,但也是相辅相成,互相促进的。第一阶段以看书为主,辅以做题;第二阶段以做题为主,辅以看书。
(3)强化训练阶段,强化训练阶段则应该主要以历届考研真题作为复习依据,大运动量的题海战术是绝对必要的;
(4)模拟冲刺阶段,必须是真刀真枪的实战演练,模拟冲刺阶段一定要参加一个复习辅导班,一定要做事前从来也没看到过的试卷,否则不就是在作弊吗。
二、各阶段的时间安排
起跑准备阶段,搜集准备资料,必须不断进行、逐步完善,
系统复习阶段,花5个月时间,应该在7月底结束;
强化训练阶段,花4个月时间,应当在11月底结束;
最后进行模拟冲刺。
三、各阶段的复习目标
(1)系统复习阶段的目标是:
●对于以前学过的知识有一个回顾总结;
●对于考研大纲能做到清楚明确。
(2)强化训练阶段的目标是要提高拿分数的能力:
●深刻理解各种基本概念、熟练掌握各种基本运算,确保考试时基本题的分数一分不漏地拿足;
●掌握一定的技巧、训练一定的综合能力,争取把综合题的分数一分一分地拿够。
(3)模拟冲刺的目标:
●全面检查复习情况;
●补足复习时遗漏环节;
●适应考试时间限制及熟悉并学会临场恰当如何安排解题进程与分配时间。
考研数学必备的解题技巧
一、单选题经典解题技巧
1.推演法。提示条件中给出一些条件或者一些数值,你很容易判断,那这样的题就用推演法去做。推演法实际上是一些计算题,简单一点的计算题。那么从提示条件中往后推,推出哪个结果选择哪个。
2.赋值法。
一、单选题经典解题技巧
1.推演法。提示条件中给出一些条件或者一些数值,你很容易判断,那这样的题就用推演法去做。推演法实际上是一些计算题,简单一点的计算题。那么从提示条件中往后推,推出哪个结果选择哪个。
2.赋值法。给一个数值马上可以判断我们这种做法对不对,这个值可以加在给出的条件上,也可以加在被选的4个答案中的其中几个上,我们加上去如果得出和我们题设的条件矛盾,或者是和我们已知的事实相矛盾。比方说2小于1就是明显的错误,所以把这些排除了,排除掉3个最后一个肯定是正确的。
3.举反例排除法。这是针对提示中给出的函数是抽象的函数,抽象的对立面是具体,所以我们用具体的例子来核定,这个跟我们刚才的赋值法有某种相似之处。一般来讲举的范例是越简单越好,而且很多考题你只要简单的看就可以看出他的错误点。
4.类推法。从最后被选的答案中往前推,推出哪个错误就把哪个否定掉,再换一个。我们推出3个错误最后一个肯定是正确的。后面三种方法有些相似之处,类推法这种方法是费时费力的,一般来讲我们不太用。
总结:经常进行自我总结,错题总结能逐渐提高解题能力。大家可以在学完每一章后,自己通过画图的形式回忆这章有哪些知识点,有哪些定理,他们之间有些什么联系,如何应用等;对做错的题分析一下原因:概念不清楚、定理用错了还是计算粗心?数学思维方法是数学的精髓,只有对此进行归纳、领会、应用,才能把数学知识与技能转化为分析问题、解决问题的能力,使解题能力“更上一层楼”。
二、证明题的解法与技巧
1.结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。
知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的 存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。
2.借助几何意义寻求证明思路
一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及 y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。
3.逆推法
从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所 举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设 F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要证的不等式。
对于那些经常使用如上方法的考生来说,利用三步走就能轻松收获数学证明的12分,但对于从心理上就不自信能解决证明题的考生来说,却常常轻易丢失12分,后一部分同学请按“证明三步走”来建立自信心,以阻止考试分数的白白流失。
比方说2小于1就是明显的错误,所以把这些排除了,排除掉3个最后一个肯定是正确的。
3.举反例排除法。这是针对提示中给出的函数是抽象的函数,抽象的对立面是具体,所以我们用具体的例子来核定,这个跟我们刚才的赋值法有某种相似之处。一般来讲举的范例是越简单越好,而且很多考题你只要简单的看就可以看出他的错误点。
4.类推法。从最后被选的答案中往前推,推出哪个错误就把哪个否定掉,再换一个。我们推出3个错误最后一个肯定是正确的。后面三种方法有些相似之处,类推法这种方法是费时费力的,一般来讲我们不太用。
总结:经常进行自我总结,错题总结能逐渐提高解题能力。大家可以在学完每一章后,自己通过画图的形式回忆这章有哪些知识点,有哪些定理,他们之间有些什么联系,如何应用等;对做错的题分析一下原因:概念不清楚、定理用错了还是计算粗心?数学思维方法是数学的精髓,只有对此进行归纳、领会、应用,才能把数学知识与技能转化为分析问题、解决问题的能力,使解题能力“更上一层楼”。
二、证明题的解法与技巧
1.结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。
知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的 存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。
2.借助几何意义寻求证明思路
一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的'一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及 y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。
3.逆推法
从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所 举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设 F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要证的不等式。
对于那些经常使用如上方法的考生来说,利用三步走就能轻松收获数学证明的12分,但对于从心理上就不自信能解决证明题的考生来说,却常常轻易丢失12分,后一部分同学请按“证明三步走”来建立自信心,以阻止考试分数的白白流失。
考研数学如何合理安排做题顺序
注意做题顺序
大家一定要注意做题顺序,先不要做模拟题,把真题做一遍之后再做模拟练习。因为真题的错误率比较低,而且题型比较经典,而市面上有的模拟题却出得刁钻古怪没有权威性,可做性不高。其实大家可以挑选把历年真题都综合起来的,并且附带详细的解题指导和解题步骤的资料。通过真题,大家可以真切体会到考研的重点、难点,重要的是大家可以掌握各种常考的题型。通常大家在开始做真题的时候会漏洞百出,不是公式记不清了,就是思路不熟。但大概做到第十套的时候,就已 经相当顺了,自信心也会随之大增,接下来做模拟题时,你会发觉自己对数学的认识有了质的提高。
注意学科间的联系
考研数学作为标准化考试,其命题范围有明确的规定,所以考生的第一轮复习主要就是依据考试大纲,详细了解考试的基本要求、题型、类别和难度特点。对于考试大纲未作要求的内容和知识点,考生可以先放一放。因为从历年试题来看,偏题怪题越来越少,超纲题的题目也在少数,因此没有必要在这上面浪费过多的时间和精力。需要大家注意的是,考研试题中一般不太可能单独考察某个知识点,一般都是几个知识点结合起来考察考生的综合分析能力,因此复习时就应该注意知识点之 间的联系,一是学科内部知识点的纵向联系,例如微积分中级数的求和一般都要用到微分或积分。注意三大学科之间的横向联系,例如概 率试题通常都会用到微积分的知识等等。这些问题都是在综合练习中应该总结和注意的地方。数学学科的特点,决定了数学考试要想取得好成绩就离不开大量有效的 练习。俗话说“熟能生巧”,对于数学的基本概念、公式、结论等只有在反复练习中才能真正理解与巩固。
【考研数学阶段划分复习计划】相关文章:
考研数学基础阶段的复习计划11-10
考研数学冲刺阶段的复习计划11-14
考研数学不同阶段的复习计划12-07
考研数学各个阶段复习计划12-15
考研数学如何合理规划分阶段复习11-15
考研数学不同阶段的复习计划如何规划12-16
考研数学不同阶段有哪些复习计划12-21
考研数学各阶段复习计划(精选9篇)06-06
考研数学12月冲刺阶段的复习计划12-22