考研数学概率与统计大纲分析
在准备考研数学的复习时,需要把概率与统计大纲的知识点掌握好。小编为大家精心准备了考研数学概率与统计大纲总结,欢迎大家前来阅读。
考研数学概率与统计大纲解析
考研数学大纲变化很大,尤其在概率论和数理统计方面,变化是最大的。从试卷分类上的变化主要是数学三和数学四,数学四并入数学三。相应的数学三有很大内容的削减,主要是概率和统计部分。
具体来说数学三降低了很多的要求,删除了参数估计里面的估计量的评选标准、区间估计和假设检验这一章。这些对于数学三的同学来说,应该是一个福音。但是从我们自身的考研辅导的角度来说,以前像评选标准,考研中考得很简单,区间估计已经好几年没有考过,假设检验从1987年考研以来总共只考过两个题,数学一和数学三各一个,这种变化其实早就是命题的规律了,只不过现在在大纲里面实实在在地体现出来而已。 作为数学四来说,增了数学三的部分,也就是数理统计的基本概念,还有点估计,点估计里面包括矩估计和最大自然估计。
这是总体上考研大纲的变化,下面是关于复习备考的建议:
一、关于大纲新增内容的考核。从历年的经验来考虑,新增的部分不会太难,数学三的同学相当于占了便宜了,本来统计部分出难题的,今年可能未必会出很难的题。另外,数学一的概率与统计的大纲没有变,注意按照数学一的大纲复习。
二、要注重题型。这个是考研当中必备的一种准备的方式,因为虽然考试也考基本概念,但是毕竟会以题目来出现,只要有题目必然会有题型,我们需要把历年的真题做一个题型归类。建议大家去买一本由历年真题形成的按照题型归类的辅导书。
三、注重书本,也就是注重基本的概念和定理证明。例如08年考题有一道变上线积分的求导公式的证明是以前没有考过的,而证明过程在书本上就有。希望大家在复习考研的时候能够更多地重视书本。
四、注重考察计算力,也就是细心和耐力。以前的所谓的难题是一看到这个题根本没法下手,但是现在经常会出现一看就会的题目,但是当做到一半的时候,比如在第三个小问的时候做不下去了,这就说明我们的计算力有问题,现在越来越多地考察计算的能力。大家在做辅导书上的习题时,多去做一些计算量大的题,而且要做到底,来锻炼自己的计算能力。
考研数学线性代数复习重点
第一章 行列式
考试内容:行列式的概念和基本性质,行列式按行(列)展开定理。
考试要求:1、了解行列式的概念,掌握行列式的性质。
2、会应用行列式的性质和行列式按行(列)展开定理计算行列式。
第二章 矩阵
考试内容:矩阵的概念,矩阵的线性运算,矩阵的乘法,方阵的幂,方阵乘积的行列式,矩阵的转置,逆矩阵的概念和性质,矩阵可逆的充分必要条件,伴随矩阵,矩阵的初等变换,初等矩阵,矩阵的秩,矩阵的等价分块矩阵及其运算。
考试要求:1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质。
2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。
3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。
4、了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。
5、了解分块矩阵及其运算。
新大纲变化:矩阵一章增加了一个知识点“分块矩阵及其运算”。
解析及应对策略:08年大纲增加了“分块矩阵及其运算”,从而达到了与数学一、数学三和数学四对矩阵要求相统一。从考试内容和考试要求上看,该知识点的增加其实是对矩阵内容考察的更加完善,充分体现了研究生入学考试的严谨性及对学生的综合能力的考察。这部分内容的增加,加大了对数学二同学矩阵方面的要求。同学们在复习这部分内容的时候,结合分块矩阵的定义及分块矩阵的运算性质。还要对矩阵的几种运算要熟练,比如:对分块矩阵求逆矩阵,分块矩阵的四则运算法则等,做到全面不遗漏。
第三章 向量
考试内容:向量的概念,向量的线性组合和线性表示,向量组的线性相关和线性无关,向量组的极大线性无关组,等价的向量组,向量组的秩,向量组的秩与矩阵的秩之间的关系,向量的内积,线性无关向量组的的正交规范化方法。
考试要求:1、理解n维向量、向量的线性组合与线性表示的概念。
2、理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法。
3、了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。
4、了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系。
5、了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法。
第四章 线性方程组
考试内容:线性方程组的克莱姆(Cramer)法则,齐次线性方程组有一非零解的充分必要条件,非齐次线性方程组有解的充分必要条件,线性方程组解的性质和解的结构,齐次线性方程组的基础解系和通解,非齐次线性方程组的通解
考试要求:1、会用克莱姆法则。
2、理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。
3、理解齐次线性方程组的基础解系、通解的概念,掌握齐次线性方程组基础解系和通解的求法
4、理解非齐次线性方程组解的结构及通解的概念。
5、会用初等行变换求解线性方程组。
第五章 矩阵的特征值及特征向量
考试内容:矩阵的特征值和特征向量的概念,性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值,特征向量及其相似对角矩阵。
考试要求:1、理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法。
2、理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。
3、掌握实对称矩阵的特征值和特征向量?? 考试内容:二次型及其矩阵表示,合同变换和合同矩阵,二次型的秩,惯性定理,二次型的标准形和规范形,用正交变换和配方法化二次型为标准形,二次型及其矩阵的正定性。
考试要求:1、了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念。
2、了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形。
3、理解正定二次型、正定矩阵的概念,并掌握其判别法。
考研根据新大纲及时调整复习方法
下面我们就来详细谈谈大纲的'作用。所谓考研数学大纲,也就是我们研究生入学数学考试的准则。它不仅仅是考生复习的准则也是命题老师必须遵守的法律。凡是大纲不要求的,命题老师不能命题,所以我们根本不需要复习。这点绝大多数考生都把握住了,但是很多考生没有注意到考试大纲的细节,也就是大纲对涉及知识点的要求不同。考研数学从本质上来说,就是考察三基本:基本概念,基本理论,基本方法,而大纲对三基本的要求有不同的修饰词。对基本概念、基本理论,大纲用的修饰词是理解或者了解;对基本方法,大纲用的修饰词是掌握或会求、会计算。这几个修饰词的作用与大家在大学考试之前老师划范围的作用是等价的,所以大家千万不要小看这几个修饰词。我们先来看对基本概念、基本理论的两个修饰词:理解和了解。细心的同学应该从字面上就看出之间的差别。如果是要求理解,说明对这部分知识的要求比较强,出题的频率比较高,所以复习的时候,投入在上面的时间尽量多一些,首先从教材上把这部分知识通过自己的语言理解,其次从辅导书中把涉及到这些知识的题型都练熟,这样才抓住了重点。比如,大纲对高数中导数的概念用的是理解,几乎年年都会涉及导数定义的题,所以我们就必须在理解导数定义的基础上,多练一些题,把它用熟;如果是要求了解,说明大纲对其的要求比较弱一点,出题的频率也比较低,通常不会年年都出考题,所以复习的时候,只需要简单了解一下,会简单应用其做题就可以。比如,概率论中的切比雪夫不等式,大纲对其的要求是了解,所以它在考研中出现的频率也比较低,几乎是隔上几年考一次,大家只需要记住这个不等式,会直接套用就可以。我们再来看对基本方法的修饰词:掌握和会求、会计算。通过上面的分析,大家心里可能已经有数了。如果是要求掌握的方法,那就必须要掌握,命题的频率相当高,必须通过大量做题把这种方法掌握,比如,像高数中,大纲要求掌握用洛比达法则求未定式极限的方法,年年考题中都会用到这种方法,所以这个方法必须要掌握,多练习这方面的例题,把涉及到的情况都练到。如果是要求会求会计算的方法,这种出题的频率不是很高,大家就可以在上面花费的时间少一点,简单了解这种方法,会针对性的利用这种方法练几个题就可以。比如,大纲要求会求有理函数、三角函数和简单无理函数的积分,这部分考题出现的频率就比较低,只需要了解一下求法,会利用求法做几个题就可以。
了解了大纲对知识点的不同要求后,大纲的重要作用就显现出来了,它除了告诉我们哪些内容不需要复习外,还告诉了我们,哪些内容我们需要重点复习,哪些内容我们只需要简单了解。这样我们才能有的放矢的复习,把有限的时间合理的分配。把大量的时间花在重点内容上,少量的时间放在次重点的内容上。
【考研数学概率与统计大纲分析】相关文章:
考研数学概率统计试题的分析12-21
考研数学大纲概率的数理统计如何复习12-07
考研数学概率统计冲刺的考点12-11
考研数学概率统计的复习规划12-16
考研数学有哪些概率统计的口诀11-08
考研数学大纲的变化分析11-29
考研数学概率与统计题型常考的要点11-15
考研数学概率统计的复习方向有哪些12-01
如何利用考研数学巧口诀学好概率统计11-07