考研数学二应该如何进行复习
我们在复习考研数学二的时候,应该规划好自己的复习计划。小编为大家精心准备了考研数学二复习技巧,欢迎大家前来阅读。
考研数学二复习方法
一、高等数学
同济六版高等数学中除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了;
二、线性代数
数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型;
三、数学二不考概率与数理统计
研究典型题型
对于数二的同学来说,需要做大量的试题。即使在初始阶段,数二的很多同学都在对典型题型进行研究,问题在于你如何研究它,我认为应该对典型题型进行全方位立体式的研究。面对一道典型例题,在做这道题以前你必须考虑,它该从哪个角度切入,为什么要从这个角度切入。
做题的过程中,必须考虑为什么要用这几个定理,而不用那几个定理,为什么要这样对这个式子进行化简,而不那样化简。做完之后,必须要回过头看一下,这个解题方法适合这个题的关键是什么,为什么偏偏这个方法在这道题上出现了最好的效果,有没有更好的解法。
就这样从开始到最后,每一步都进行全方位的思考,那么这道题的价值就会得到充分的发掘。学习数学二,重在做题,熟能生巧。对于数学的基本概念、公式、结论等也只有在反复练习中才能真正理解与巩固。数学试题虽然千变万化,其知识结构却基本相同,题型也相对固定,往往存在一定的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。
训练解答综合题
此外,还要初步进行解答综合题的训练。数学二的重要特征之一就是综合性强、知识覆盖面广,近几年来较为新颖的综合题愈来愈多。这类试题一般比较灵活,难度也要大一些,应逐步进行训练,积累解题经验。这也有利于进一步理解并彻底弄清楚知识点的纵向与横向联系,转化为自己真正掌握了的东西,能够在理解的基础上灵活运用、触类旁通。
同时要善于思考,归纳解题思路与方法。一个题目有条件,有结论,当你看见条件和结论想起了什么?这就是思路。思路有些许偏差,解题过程便千差万别。考研数学复习光靠做题也是不够的,更重要的是应该通过做题,归纳总结出一些解题的方法和技巧。
考生要在做题时巩固基础,在更高层次上把握和运用知识点。对数学习题最好能形成自己熟悉的解题体系,也就是对各种题型都能找到相应的解题思路,从而在最后的实考中面对陌生的试题时能把握主动。
做参考书上的练习题
考研试题与教科书上的习题的不同点在于,前者是在对基本概念、基本定理、基本方法充分理解的基础上的综合应用,有较大的灵活性,往往一个命题覆盖多个内容,涉及到概念、直观背景、推理和计算等多种角度。因此一定要力争在解题思路上有所突破,要在打好基础的同时做大量的综合性练习题,并对试题多分析多归纳多总结,力求对常见考题类型、特点、思路有一个系统的把握。
解题训练最好按题型进行分类复习,对于任何一个同学而言,都可能有自己很擅长的某些类型的题,相反的`,也有一些不太熟悉或者不会做的题型,这在复习的过程中也当有所侧重。
第一遍复习的时候,需要认真研究各种题型的求解思路和方法,做到心中有数,同时对自己的强项和薄弱环节有清楚的认识,第二遍复习的时候就可以有针对性地加强自己不擅长的题型的练习了,经过这样两边的系统梳理,相信解题能力一定会有飞跃性的提高。
考研数学遇难题如何分段得分
会做的题目要力求做对、做全、得满分,而更多的问题是对不能完整完成的题目如何分段得分。下面有两种常用方法。
一、面对一个疑难问题,一时间想不出方法时,可以将它划分为几个子问题,然后在解决会解决的部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步。
如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。而且可望在上述处理中,可能一时获得灵感,因而获得解题方法。
二.有些问题好几问,每问都很难,比如前面的小问你解答不出,但后面的小问如果根基前面的结论你能够解答出来,这时候不妨先解答后面的,此时可以引用前面的结论,这样仍然可以得分。
如果稍后想出了前面的解答方法,可以补上:“事实上,第一问可以如下证明”。
选择题有什么解题技巧吗?
1、直接求解法
从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择支对照来确定选择支。
2、筛选排除法
在几个选择支中,排除不符合要求的选择支,以确定符合要求的选择支。
3、特殊化方法
就是取满足条件的特例(包括取特殊值、特殊点、以特殊图形代替一般图形等),并将得出的结论与四个选项进行比较,若出现矛盾,则否定,可能会否定三个选项;若结论与某一选项相符,则肯定,可能会一次成功,这种方法可以弥补其它方法的不足。
考研数学三掌握23个高频考点
(1)曲线的渐近线;
(2)某点处的高阶导数;
(3)化极坐标系下的二次积分为直角坐标系下的二次积分;
(4)数项级数敛散性的判定;
(5)向量组的线性相关性;
(6)初等变换与初等矩阵;
(7)二维均匀分布;
(8)统计量的常见分布;
(9)未定式的极限;
(10)分段函数的复合函数的导数;
(11)二元函数全微分的定义;
(12)平面图形的面积;
(13)初等变换、伴随矩阵、抽象行列式的计算;
(14)随机事件的概率;
(15)未定式的极限;
(16)无界区域上的二重积分;
(17)多元函数微分学的经济应用,条件极值;
(18)函数不等式的证明;
(19)微分方程、变限积分函数、拐点;
(20)含参数的方程组;
(21)利用正交变换化二次型为标准形;
(22)二维离散型随机变量的概率、数字特征;
(23)二维常见分布的随机变量函数的分布、数字特征
【考研数学二应该如何进行复习】相关文章:
考研数学应该如何进行复习12-06
考研数学三应该如何进行复习11-25
英语考研如何进行复习06-30
考研学子应该如何进行备考07-14
考研数学暑期应该如何复习11-10
考研数学三应该如何复习12-01
考研数学寒假应该如何复习12-20
考研数学大纲应该如何复习12-20
考研暑假应该如何复习数学12-20