考研备考 百文网手机站

考研数学矩阵乘法复习指导

时间:2021-12-05 17:21:39 考研备考 我要投稿

考研数学矩阵乘法复习指导

  我们在进行考研数学的矩阵乘法复习时,需要掌握好学习的重点。小编为大家精心准备了考研数学矩阵乘法的复习资料,欢迎大家前来阅读。

考研数学矩阵乘法复习指导

  考研数学矩阵乘法的复习指南

  1.若A,B都是n阶方阵,则|AB|=|A||B|。

  我们知道,|A+B|难解。相比之下,乘积算法复杂得多,而积矩阵行列式公式却如此简明,自然显示了矩阵乘法之成功。

  特别地,如果AB=BA=E,则称B是A的逆阵;或说A与B互逆。

  A*是A的代数余子式按行顺序转置排列成的。之所以这样做,就是恰好有(基本恒等式)AA*=A*A=|A|E,顺便有|A|≠0时,|AA*|=||A|E|,故|A*|=|A|的n-1次方。

  2.对矩阵实施三类初等变换,可以通过三类初等阵分别与矩阵相乘来实现。“左乘行变,右乘列变。”给理论讨论及应用计算机带来很大的方便。

  3.分块矩阵乘法,形式多样,内函丰富。

  要分块矩阵乘法可行,必须要在“宏观”与“微观”两方面都确保可乘。

  AB=A(b1,b2,——,bs)=(Ab1,Ab2,——,Abs)

  宏观可乘:把各分块看成一个元素,满足阶数规则(1×1)(1×s)=(1×s).

  微观可乘:相乘的子块都满足阶数规则。(m×n)(n×1)=(m×1),具体如,Ab1是一个列向量

  AB=0的基本推理

  AB=0,即(Ab1,Ab2,——,Abs)=(0,0,——,0)

  →B的每一个列向量都是方程组Ax=0的解。

  →B的列向量组可以被方程组Ax=0的基础解系线性表示。

  →r(B)≤方程组Ax=0的解集的秩=n-r(A)→r(B)+r(A)≤n.

  例:已知(n维)列向量组a1,a2,——,ak线性无关,A是m×n阶矩阵,且秩r(A)=n,试证明,Aa1,Aa2,——,Aak线性无关

  分析设有一组数c1,c2,——,ck,使得c1Aa1+c2Aa2+——+ckAak=0.

  即A(c1a1+c2a2+——+ckak)=0.

  这说明c1a1+c2a2+——+ckak是方程组Ax=0的解。

  但是,方程组Ax=0的解集的秩=n-r(A)=0,方程组Ax=0仅有0解。

  故c1a1+c2a2+——+ckak=0由已知线性无关性得常数皆为0.

  考研数学线性代数阶段复习小结

  概念多、定理多、符号多、运算规律多、内容相互纵横交错,知识前后紧密联系是线性代数课程的特点,故考生应充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法,并及时进行总结,抓联系,使学知识能融会贯通,举一反三,根据以前大纲的要求,这里再具体指出如下:

  行列式的重点是计算,利用性质熟练准确的计算出行列式的值。矩阵中除可逆阵、伴随阵、分块阵、初等阵等重要概念外,主要也是运算,其运算分两个层次,一是矩阵的符号运算,二是具体矩阵的数值运算。例如在解矩阵方程中,首先进行矩阵的符号运算,将矩阵方程化简,然后再代入数值,算出具体的结果,矩阵的求逆(包括简单的分块阵)(或抽象的,或具体的,或用定义,或是用公式A -1= 1 A*,或 A用初等行变换),A和A*的关系,矩阵乘积的行列式,方阵的幂等也是常考的内容之一。

  关于向量,证明(或判别)向量组的线性相关(无关),线性表出等问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。

  向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。在Rn中,基、坐标、基变换公式,坐标变换公式,过渡矩阵,线性无关向量组的标准正交化公式,应该概念清楚,计算熟练,当然在计算中列出关系式后,应先化简,后代入具体的数值进行计算。

  行列式、矩阵、向量、方程组是线性代数的基本内容,它们不是孤立隔裂的,而是相互渗透,紧密联系的,例如∣A∣≠0〈===〉A是可逆阵〈= ==〉r(A)=n(满秩阵)〈===〉A的列(行)向量组线性无关〈===〉AX=0唯一零解〈===〉AX=b对任何b均有(唯一)解〈===〉A=P1 P2 …PN,其中PI(I=1,2,…,N)是初等阵〈===〉r(AB)=r(B)<===>A初等行变换I〈===〉A的列(行)向量组是Rn的一个基〈===〉A可以是某两个基之间的过渡矩阵等等。这种相互之间的联系综合命题创造了条件,故对考生而言,应该认真总结,开拓思路,善于分析,富于联想使得对综合的,有较多弯道的试题也能顺利地到达彼岸。

  关于特征值、特征向量。一是要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程∣λE-A∣=0 及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用,二是有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵,反过来,可由A 的特征值,特征向量来确不定期A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A 。三是相似对角化以后的应用,在线性代数中至少可用来计算行列式及An。

  将二次型表示成矩阵形式,用矩阵的方法研究二次型的问题主要有两个:一是化二次型为标准形,这主要是正交变换法(这和实对称阵正交相似对角阵是一个问题的两种提法),在没有其他要求的情况下,用配方法得到标准形可能更方便些;二是二次型的正定性问题,对具体的`数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象的由给定矩阵的正定性,证明相关矩阵的正定性时,可利用标准形,规范形,特征值等到证明,这时应熟悉二次型正定有关的充分条件和必要条件。

  考研数学微积分阶段小结

  本章的重点内容是:

  一、多元函数(主要是二元、三元)的偏导数和全微分概念;

  二、偏导数和全微分的计算,尤其是求复合函数的二阶偏导数及隐函数的偏导数;

  三、方向导数和梯度(只对数学一要求);

  四、多元函数微分在几何上的应用(只对数学一要求);

  五、多元函数的极值和条件极值。

  本章的常见题型有:

  1.求二元、三元函数的偏导数、全微分。

  2.求复全函数的二阶偏导数;隐函数的一阶、二阶偏导数。

  3.求二元、三元函数的方向导数和梯度。

  4.求空间曲线的切线与法平面方程,求曲面的切平面和法线方程。

  5.多元函数的极值在几何、物理与经济上的应用题。

  第4类题型,是多元函数的微分学与前一章向量代数与空间解析几何的综合题,应结合起来复习。

  极值应用题多要用到其他领域的知识,特别是在经济学上的应用涉及到经济学上的一些概念和规律,读者在复习时要引起注意。一元函数微分学在微积分中占有极重要的位置,内容多,影响深远,在后面绝大多数章节要涉及到它。

  本章内容归纳起来,有四大部分:

  1.概念部分,重点有导数和微分的定义,特别要会利用导数定义讲座分段函数在分界点的可导性,高阶导数,可导与连续的关系;

  2.运算部分,重点是基本初等函的导数、微分公式,四则运算的导数、微分公式以及反函数、隐函数和由参数方程确定的函数的求导公式等;

  3.理论部分,重点是罗尔定理,拉格朗日中值定理,柯西中值定理;

  4.应用部分,重点是利用导数研究函数的性态(包括函数的单调性与极值,函数图形的凹凸性与拐点,渐近线),最值应用题,利用洛必达法则求极限,以及导数在经济领域的应用,如"弹性"、"边际"等等。

  常见题型有:

  1.求给定函数的导数或微分(包括高阶段导数),包括隐函数和由参数方程确定的函数求导。

  2.利用罗尔定理,拉格朗定理,拉格朗日中值定理,柯西中值定理证明有关命题和不等式,如"证明在开区间至少存在一点满足……",或讨论方程在给定区间内的根的个数等。

  此类题的证明,经常要构造辅助函数,而辅助函数的构造技巧性较强,要求读者既能从题目所给条件进行分析推导逐步引出所需的辅助函数,也能从所需证明的结论(或其变形)出发"递推"出所要构造的辅函数,此外,在证明中还经常用到函数的单调性判断和连续数的介值定理等。

  3.利用洛必达法则求七种未定型的极限。

  4.几何、物理、经济等方面的最大值、最小值应用题,解这类问题,主要是确定目标函数和约束条件,判定所论区间。

  5.利用导数研究函数性态和描绘函数图像,等等。


【考研数学矩阵乘法复习指导】相关文章:

考研复习指导:数学暑期复习08-20

考研数学考前的复习指导12-12

考研数学复习的技巧指导12-07

考研数学复习技巧指导06-30

考研数学复习方法指导06-26

考研数学的复习方法指导06-27

考研数学冲刺备考的复习指导12-11

考研数学概率的重点复习指导12-06

考研数学初期复习的重点指导12-07