考研数学解题速度和准确度如何提升
我们在进行考研数学的复习时,需要把解题速度和准确度提升,效率才会快。小编为大家精心准备了考研数学解题速度和准确度提升技巧,欢迎大家前来阅读。
考研数学解题速度和准确度提升方法
一、大量做题并不是关键
在考研复习期间,每个人都会做大量的数学题,但题目的数量并不是决定胜负的关键,关键在于做题的质量。所谓“质量”,是指你从一道题中学到了多少知识和解题方法,发现了多少自身存在的问题,体会到了多少命题的思路和考点。提醒考生,考研数学复习必须做题,但是不能把做题和基础知识的复习对立起来。有人认为数学基本题太简单,不愿意做,都去做更多更难的题目。但是,如果对理论知识领会不深,基本概念都没搞清楚,恐怕基本题也做不好,又怎么谈得上做更多更难的题目呢?缺乏基本功,盲目追求题目的深度、难度和做题数量,结果只能是深的不会做,浅的也难免错误百出。
二、解题思路“对症下药”
解题的过程也是加深对数学定理、公式和基本概念的理解和认识的过程。如果在这个过程中出现很多错误或没有解题思路,也就说明你对教材的理解和认识上有很多欠缺、片面甚至错误的地方,或是在运用知识的能力方面还很不够。这时就要抓住他,刨根问底,找出原因:是对定理理解错了,还是没有看清题意;是应用公式的能力不强,还是自己粗枝大叶,没有仔细分析等等。找到原因,有针对性地加以改正,就能吃一堑长一智,不必埋怨自己“倒霉”,只要有针对性地加以改正即可。做题最重要的是讲求质量,所以我们一定要精选精解。考研数学复习必须注意考点和题型,二者相辅相成,互相促进提高。如果学生做了某道题目后,便能处理同类的题目,能够举一反三,则这道题目就代表了一种题型,其解题方法就有一定的代表性,应该精练。当然,能否举一反三与学生的基础有关,但学生做一道题后,能否得到很多收获和提高,却是题目的代表性和典型性问题。
考研数学高数7大重点及考察形式
1、函数、极限与连续。主要考查极限的计算或已知极限确定原式中的常数、讨论函数连续性和判断间断点类型、无穷小阶的比较、讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,关键是要对这些概念有本质的理解,在此基础上找习题强化。
2、一元函数微分学。主要考查导数与微分的定义、各种函数导数与微分的计算、利用洛比达法则求不定式极限、函数极值、方程的的个数、证明函数不等式、与中值定理相关的证明、最大值、最小值在物理、经济等方面实际应用、用导数研究函数性态和描绘函数图形、求曲线渐近线。求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。
3、一元函数积分学。主要考查不定积分、定积分及广义积分的计算、变上限积分的求导、极限等、积分中值定理和积分性质的证明、定积分的应用,如计算旋转面面积、旋转体体积、变力作功等计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。这一部分主要以计算应用题出现,只需多加练习即可。
4、向量代数和空间解析几何。计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。
5、多元函数的微分学。主要考查偏导数存在、可微、连续的.判断、多元函数和隐函数的一阶、二阶偏导数、多元函数极值或条件极值在与经济上的应用、二元连续函数在有界平面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。
6、多元函数的积分学。包括二重积分在各种坐标下的计算,累次积分交换次序。数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。
7、微分方程。主要考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。差分方程的基本概念与一介常系数线形方程求解方法。求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。
考研数学高分需具备的4种能力
习惯思考的能力
看历年考研真题,总结考试题目的规律,思考命题特点及与考试大纲之间的联系。阅读一个知识点,宏观上思考其在整个数学科目中作用及与其他科目之间的联系,微观上思考其本身概念的深度,其具有的特点及满足的性质等等。拿到一个题目,研究其条件与结论的联系,思考题目所在的知识点及可能使用的方法,能否用更多的方法来求解,能否找到最为简单的方法。
高效解决问题的能力
题型的归纳都比较全面,考试时不仅要正确解答题目,更重要的是要快速的达到目的。现在很多辅导资料对知识点的总结,如果能利用其对知识的归纳再加上自己的边看边思考,对知识点达到融会贯通不成问题。
快速判断所考知识点的能力
考研数学大纲所规定的知识点是有限的,重要的知识点就更少一些,但考研数学已经进行了二十几年,重点之处年年考,但这些知识点每年都会换上新的外衣,乔装打扮,使不少考生被蒙蔽,之后悔之不及。
持之以恒的能力
一定要坚持到底!数学因其高于日常生活而常受到学生的冷落,这样就会产生马太效应,愈不关心她,它就离你愈远,考研复习需要保持对数学热情。
【考研数学解题速度和准确度如何提升】相关文章:
考研数学如何提升解题能力12-08
初中数学提升解题速度的方法06-29
如何提高数学解题速度07-02
初中数学如何提高解题速度07-13
高三数学提高解题准确度与速度知识点07-21
如何提升初级会计职称解题速度11-15
考研数学如何开展解题思路12-21
考研数学的解题思路如何打开11-07
考研数学如何提高解题速率和正确率12-07