考研资讯 百文网手机站

考研数学三应该掌握哪些重要考点

时间:2021-12-05 15:19:01 考研资讯 我要投稿

考研数学三应该掌握哪些重要考点

  我们在面临考研数学三的考研时,应该掌握的重要考点有很多。小编为大家精心准备了考研数学的重要知识,欢迎大家前来阅读。

考研数学三应该掌握哪些重要考点

  考研数学三掌握23个重要考点

  (1)曲线的渐近线;

  (2)某点处的高阶导数;

  (3)化极坐标系下的二次积分为直角坐标系下的二次积分;

  (4)数项级数敛散性的判定;

  (5)向量组的线性相关性;

  (6)初等变换与初等矩阵;

  (7)二维均匀分布;

  (8)统计量的常见分布;

  (9)未定式的极限;

  (10)分段函数的复合函数的导数;

  (11)二元函数全微分的定义;

  (12)平面图形的面积;

  (13)初等变换、伴随矩阵、抽象行列式的计算;

  (14)随机事件的概率;

  (15)未定式的极限;

  (16)无界区域上的二重积分;

  (17)多元函数微分学的经济应用,条件极值;

  (18)函数不等式的证明;

  (19)微分方程、变限积分函数、拐点;

  (20)含参数的方程组;

  (21)利用正交变换化二次型为标准形;

  (22)二维离散型随机变量的概率、数字特征;

  (23)二维常见分布的随机变量函数的分布、数字特征

  考研数学三步解证明题

  第一步:首先要记住零点存在定理,介值定理,中值定理、极限存在的两个准则等基本原理,包括条件及结论,中值定理最好能记住他们的推到过程,有时可以借助几何意义去记忆。

  因为知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。再比如2009年直接让考生证明拉格朗日中值定理;但是像这样直接可以利用基本原理的证明题在考研真题中并不是很多见,更多的是要用到第二步。

  第二步:可以试着借助几何意义寻求证明思路,以构造出所需要的辅助函数。

  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

  第三步:从要证的结论出发,去寻求我们所需要的构造辅助函数,我们称之为“逆推”。

  如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。

  考研数学暑期需重点复习的7个知识点

  1、两个重要极限,未定式的极限、等价无穷小代换

  这些小的知识点在历年的考察中都比较高。而透过我们分析,假如考极限的话,主要考的是洛必达法则加等价无穷小代换,特别针对数三的同学,这儿可能出大题。

  2、处理连续性,可导性和可微性的关系

  要求掌握各种函数的求导方法。比如隐函数求导,参数方程求导等等这一类的,还有注意一元函数的应用问题,这也是历年考试的一个重点。数三的'同学这儿结合经济类的一些试题进行考察。

  3、参数估计

  这一点是咱们经常出大题的地方,这一块对咱们数一,数二,数三的考生来讲,包含两块知识点,一个是矩估计,一个是最大似然估计,这两个集中出大题。

  4、级数问题,主要针对数一和数三

  这部分的重点是:一、常数项级数的性质,包括敛散性;二、牵扯到幂级数,大家要熟练掌握幂级数的收敛区间的计算,收敛半径与和函数,幂级数展开的问题,要掌握一个熟练的方法来进行计算。对于幂级数求和函数它可能直接给咱们一个幂级数求它的和函数或者给出一个常数项级数让咱们求它的和,要转化成适当的幂级数来进行求和。

  5、微分方程:一是一元线性微分方程,第二是二阶常系数齐次/非齐次线性微分方程

  对第一部分,考生需要掌握九种小类型,针对每一种小类型有不同的解题方式,针对每个不同的方程,套用不同的公式就行了。对于二阶常系数线性微分方程大家一定要理解解的结构。另一块对于非齐次的方程来说,考生要注意它和特征方程的联系,有齐次为方程可以求它的通解,当然给出的通解大家也要写出它的特征方程,这个变化是咱们这几年的一个趋势。这一类问题就是逆问题。

  对于二阶常系数非齐次的线性方程大家要分类掌握。当然,这一块对于数三的同学来说,还有一个差分方程的问题,差分方程不作为咱们的一个重点,而且提醒大家一下,学习的时候要注意,差分方程的解题方式和微方程是相似的,学习的时候要注意这一点。

  6、随机变量的数字特征

  要记住一维随机变量的数字特征都要记熟,数字特征很少单独性考察,往往和前面的一维随机变量函数和多维随机变量函数和第六章的数理统计结合进行考察。特别针对数一的同学来说,考察矩估计和最大似然估计的时候会考察无偏性。

  7、一维随机变量函数的分布

  这个要重点掌握连续性变量的这一块。这里面有个难点,一维随机变量函数这是一个难点,求一元随机变量函数的分布有两种方式,一个是分布函数法,这是最基本要掌握的。另外是公式法,公式法相对比较便捷,但是应用范围有一定的局限性。


【考研数学三应该掌握哪些重要考点】相关文章:

考研数学三有哪些重要考点需要掌握12-05

考研数学三需要掌握的重要考点09-06

考研数学概率有哪些重要考点11-25

考研数学线性代数有哪些重要考点12-18

考研数学一有哪些重要的考点11-14

考研高效备考应该掌握哪些技能10-21

考研数学排列重要考点分析11-06

考研数学重要考点做题方法12-05

考研数学冲刺阶段的重要考点12-05