考研数学拿高分的解题技巧
我们在准备考研数学的时候,想要拿高分的朋友,就要了解清楚有哪些解题技巧。小编为大家精心准备了考研数学拿高分的解题方法,欢迎大家前来阅读。
考研数学致胜的8大解题法
(一)单选题
单选题的解题方法总结一下,也就下面这几种。
▶1.代入法
也就是说将备选的一个答案用具体的数字代入,如果与假设条件或众所周知的事实发生矛盾则予以否定。
▶2.演算法
它适用于题干中给出的条件是解析式子。
▶3.图形法
它适用于题干中给出的函数具有某种特性,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。
▶4.排除法
排除了三个,第四个就是正确的答案,这种方法适用于题干中给出的函数是抽象函的情况。
▶5.反推法
所谓逆推法就是假定被选的四个答案中某一个正确,然后做反推,如果得到的结果与题设条件或尽人皆知的正确结果矛盾,则否定这个备选答案。
(二)大题
接下来提供给大家几个大题的答题技巧,大家认真领会方法,要做到活学活用。
▶6.踩点得分
对于同一道题目,有的人解决得多,有的人解决得少。为了区分这种情况,阅卷评分办法是懂多少知识就给多少分,这种方法我们叫它“踩点给分”.
鉴于这一情况,考试中对于难度较大的题目采用一定的策略,其基本精神就是会做的题目力求不失分,部分理解的题目力争多得分。对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。
有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。
对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。对绝大多数考生来说,更为重要的是如何从拿不下来的题目中得点分。有什么样的解题策略,就有什么样的得分策略。其实你要做的是认认真真把你解题的真实过程原原本本写出来,就是最好的得分技巧。
▶7.大题拿小分
如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。
特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”,确实是个好主意。
卡壳处先留白,以后推前:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。
由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。
▶8.以退求进
“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。
为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。这个技巧需要同学们做题做到一定境界来体会,如果可以做到这一步,那么什么难题都不是难题了。
考研数学四大高分策略
一、明确高频的考题
高频的考题其实就是命题的重点,一般的情况下,这样的命题是要年年进行考查的。
▶微积分
极限函数和连续性这一部分内容来讲,高频的考题是什么呢?那就是未定式的极限。我们说,对于像幂指函数这样的未定式的极限,它是重点考查的内容。它就是高频的考点。
还会有其他的求极限的方法,比如说利用定积分的定义,像中值定理来进行极限的计算,这样的内容虽然它未必是高频的考题,但是我们也一定要进行重视。也就是说它会偶尔进行出现。
像一元函数的微分学,求导运算它是微积分的基础,也是考查的重点内容。在各类函数的求导问题当中,高频的考点比如说像隐函数求导,像数学一和数学二由参数方程所确定的函数的导数,像分段函数的可导性,它的考查这些都是高频的考题。
像幂指函数的求导、复合函数的求导,它也会偶尔进行考查。
再比如一元函数微分学的应用,每年是必考的内容,像研究函数的性态,比如说函数单调性、极值、最值和凹凸性,相比而言像极值和最值的问题,就是绝对高频的考点,几乎年年都要进行考查。
但是像对于凹凸性这样的问题,我们也不能忽视。也就是说,我要掌握了描述函数图形的各类的这样的步骤和方法,对于这类的问题我们就可以迎刃而解。像这些问题的延伸问题,比如说利用单调性、凹凸性、极值和最值来证明不等式,我们就要掌握这类问题的常规的解题模式和方法。向来研究方程根的个数问题,每隔几年也要进行考查。
像一元函数积分学,这里面的高频内容就是积分上限函数。伴随这积分上限函数,它就会一定有求导的过程。这样的话,对于积分上限函数,它就是高频的考题。我们就要重点掌握它的求导运算。但是对于积分的一般的运算,我们也不能忽视,所以高频和低频是相对而言的。
像多元函数微分学,它的应用当中,极值和条件极值就是重点考查的内容。而对于偏导运算,几乎每年要进行考查。对于数学一而言,方向导数和梯度,它就会偶尔进行考查。
像多元函数的积分学,像二次积分,几乎每年都会出解答题。对于曲线和曲面积分,一般也是以解答题的形式出现,这样对于数学已的考生就要重点掌握。
▶线性代数
我们应该重点掌握,像矩阵、向量和向量组,还有线性代数方程组,它们这些问题之间的相互关系,和之间的相互研究,只要我们把这个问题研究清楚了,无论题型怎么变换,无论题怎么样的角度来变换,我们都能够很好的进行解答。
▶概率论和数理统计
哪些是高频的考点,在考试大纲中也明确的为大家进行了分析。比如说实际上概率的核心问题就是三个问题:一,事件的概率怎么样来进行计算;二,就是随机变量它的分布如何来求取;三,就是随机变量的数字特征。无论怎么样来进行命题,这三个校对都是重点考查的内容。所以根据考试大纲解析,我们能够明确这些高频的考点,我们就掌握了80%的分量。
二、重视历年真题
根据2016年试卷的分析,我向大家提供一个参考的意见,能够覆盖所有考点的资料,还有历年的真题。这个历年的真题呢,不是指十年或十五年内的真题,多少练习的题量比较好,我们练习什么样的题比较合适,我向大家推荐历年的真题。
从历年真题的梳理上来看的话,原来考察过的内容,它还会以不同的角度来进行出现,有些八几年的题,九几年的题,变幻一个角度的话,现在它仍然会考查出来。我们在进行复习的过程当中,总要选择一个习题来进行知识的巩固和提高,所有的问题都是一种模拟,而只有真题,它直接就是考题,它是最能覆盖所有考点,最能体会命题角度,也最能够展现出命题规律的这样的一份资料。所以建议同学们把真题最好做一遍到两遍。
三、杜绝一下误区
从我们对于考试的分析和同学的反映来看,我们在复习中有几个比较明显的几个误区。
1.重结论轻原理
影响数学高分的内容,重点是在前面的客观题部分。客观题这部分,其中八个选择,六个填空,占有56分。如果客观题答的不好,这张试卷是很难获得高分的。客观题重在考查什么?也就是说,填空题重在考查计算。一般来讲,填空题相对比较简单。而选择题一般有干扰项,所以重在考查原理,而这一部分的分值呢是不容易获得的。所以对于原理我们还是要重视。
比如说原函数存在定理。被积函数小fx要是连续,我们知道它的原函数是存在的。掌握到这个程度是不可以的'。被积函数如果不连续,它有第一类或第二类的间断点,它有没有原函数呢?我们就要把这些理论问题要进行深入要搞清楚。再比如,像独立重复试验当中,事件概率的计算,这样概率的计算,我们不能仅仅掌握,n重伯努利实验,我们还要掌握几何概型问题,而更为重要的是帕斯卡分布。所以在2016年数学三的填空题当中,就考了独立重复实验当中事件概率的计算。
所以我们要在复习过程当中,不仅要抓住结论,更要把结论的过程搞清楚,它就是命题的重点内容和角度。
2.重个别轻全面
我们要对于全面进行综合能力的培养和提高。所以我们不能重个别轻全面。但是这要一分为二来看,也就是说,建议数学一的同学,只要考试大纲规定的内容,一定要全面复习,对于高频的考点,也一定要进行重点的保障把握,但是二和三,由于考试内容相对较少,所以它的重点,它的规律性是非常明显的,所以我们要重点掌握。在这个基础上进行全面复习。
3.重模式轻思考
必要的模式是需要掌握的,但是在使用这个模式的时候,我们怎样对这个模式进行认识,怎么样在遇到困难的时候,实行思路转化,怎么样在转化的过程中,遇到困难,我们进行逆向思考,这是一种能力的培养。在复习当中,我们要注意培养这方面的能力。第四个误区,就是重外力轻自身。特别是在每年这个阶段,是一个关键的阶段。
很多考生呢,特别注重外力。外力只是进步的一个外部推动作用,我们更要调动自身的积极主动性。所以我们在后面的有限时间里面,虽然时间不多,但是可以肯定的说,时间是够用的。只要我们把这部分时间合理安排好,合理的规划好,要注意自身能力的培养和提高。我们在最后这个阶段,就能够提高自己的成绩。也就是说,从综合能力来看的话,如果根据个人目标,想达到国家的复试线,这是没有问题的,如果你要是考一些名校和一些热门的专业,就不是这样能过国家复试线的问题,那就是说要达到高分值这样的一个问题。
四、高分策略
这样针对这些问题,给大家提出如下高分的策略:识全识美。
第一个“识”,就是我们要把考试大纲重头到尾进行梳理一下。我们要对大纲要求的知识,要进行识记,并且要熟练记忆。
这个第一关,看似是最简单最基础,实际上是最难的。对于多数的考生而言,第一关往往是造成失败的主要原因。
比如说数学一,由于考点要求的很多,很多考点,我们主要是记住了它的概念,这样的问题就会迎刃而解。我们不会的原因,并不是因为我们自身的能力不强或者是不够聪明。主要是对这部分内容,我们识记没有过。我们没有记住这些基本的概念和原理。
第二个,就是要“全”,进行全面复习,不留死角。这个建议,主要是针对数学一同学而言的。那也就是说,从2016年的考试情况来看的话,如果我们盲目的猜重点,猜测考点,自己来揣摩哪些地方不考,我们就忽视了,而这些问题,恰恰就会考查出来。所以在后面有限的时间段里面,我们要进行全面的复习。对于平时没有掌握的遗留问题,要进行重点突破。
第三个“识”,就是辨识能力,这个是个质的飞跃,一个能力提升的过程。辨识能力是数学的高层次,也就是说,我们能够识别这个问题是个什么样的问题。像概率里面,数学三独立重复实验。它是伯努利概型,还是几何分布,还是帕斯卡分布。
第四个“美”,就是最高的阶段。很多数学家,他是把数学上升为美学,这是一个哲学范畴的一个概念。就是我们这个试卷,是要解答规范,形式要美观。从去年的阅卷情况来看,在批阅试卷的过程当中,我们在这个试卷里面反映的问题是非常突出的。主要在试卷中体现的问题有几个方面。
第一个方面,就是时间很仓促。很多同学明显看出来最后的题,解答没有时间了,字迹很潦草。因此在解答试卷的过程当中,我们每个部分要注意时间的分配。
第二个,就是突出的问题,基本概念不清楚。比如说,去年的概率论,这样一个问题,第一问呢,是告诉我们二维随机变量,在一个区域上服从均匀分布,要我们写出它的联合概率密度,所以考生都知道注意这个面积是3,但是就会有一半的考生不会把这个面积倒过来,得到联合概率密度。其实这样的问题,根本不是一个很难的问题,我们只要能够把这个面积倒过来,就会获得联合概率密度。所以,第二个问题,就体现了基本概念不清楚。
第三个问题,在最后这一阶段,很多同学因为数学的难度,对自己没有信心,想要放弃数学,或者是避开数学,其实数学是能够获得高分,使自己与其他人拉开差距的一个中坚力量,也就是说,得数学者可以得天下,如果数学成绩好,他所占有的优势是极巨大的。所以,我们要相信自己的能力,我们数学要尽力争取高分。
综合来看,2017年考研数学大纲,虽然在内容上和叙述上没有发生任何的变化,但是数学学科,他所本身具有的特殊性,不变的是考纲,但是数学的题,却是千变万化,命题的角度变化多端,特别是有些内容写的比较笼统的地方,同学们可以参照考纲分析、大纲解析来进行梳理,最后,衷心的祝愿2017年的考生朋友们能够合理科学充分的利用这段时间,做好最后的复习。
考研数学的知识点
▶1.几个易混概念
连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系式怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。
▶2.罗尔定理
设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a、b),使得f‘(ξ)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义,①f(x)在[a,b]上连续表明曲线连同端点在内是无缝隙的曲线;②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;③f(a)=f(b)表明曲线的割线(直线AB)平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f’(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。
▶3.泰勒公式展开的应用专题
我以前,以及我所有的同学,看到泰勒公式就哆嗦,因为咋一看很长很恐怖,瞬间大脑空白,身体失重的感觉。其实在我搞明白一下几点后,原来的症状就没有了。第一:什么情况下要进行泰勒展开;第二:以哪一点为中心进行展开;第三:把谁展开;第四:展开到几阶?
▶4.应用多次中值定理的专题
大部分的考研题,一般要考察你应用多次中值定理,最重要的就是要培养自己对这种题目的敏感度,要很快反映老师出这题考哪几个中值定理,我的敏感性是靠自己多练习综合题培养出来的。我会经常会去复习,那样我对中值定理的题目早已没有那种刚学高数时的害怕之极。要想对微分中值定理这块的题目有条理的掌握,看我这个总结定会事半功倍的。
▶5.对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用
这几乎每年必考,要么小题中考,要么大题中要用,这是必须掌握的知识,但是往往不是那么容易就靠做3,4个题目就能了解这知识点的应用到底有多广泛。
我们做积分题,尤其多重积分和线面积分,死算也许能算出结果,但是要是能用以上性质,那可真是三下五除二搞定,这方面的感觉相信大家有过,可是或许仅仅是昙花一现,因为你做出来了以为以后就一定会在相似的题目中用,其实不然,因为仅仅靠几道题目很大程度上不能给你留下太深刻的印象,下次轮到的时候或许就是考场上了,你可能顿时苦思冥想,最终还是选择了最傻的办法,浪费了宝贵时间。说这些其实就是说明,考场上的正常或超常发挥是建立在平时踏实做,见识广,严要求的基础上。
【考研数学拿高分的解题技巧】相关文章:
考研数学拿高分的题型解题技巧12-08
考研数学5个解题技巧拿高分06-30
考研数学拿高分的备考计划12-16
考研数学拿高分的注意要点12-18
考研数学拿高分的策略分析12-18
考研数学拿高分的复习关键12-15
考研数学复习拿高分的攻略12-18
考研数学备考拿高分的方法12-01
考研数学复习拿高分的指南12-04