考研数学高数中值定理的详解

时间:2023-07-05 11:00:11 考研资讯 我要投稿
  • 相关推荐

考研数学高数中值定理的详解

  我们在准备考研数学高数的复习手,面对中值定理,我们应该掌握好它的学习方法。小编为大家精心准备了考研数学高数中值定理的解析,欢迎大家前来阅读。

考研数学高数中值定理的详解

  考研数学高数中值定理的详解

  中值定理的相关证明是考研数学中公认的重点和难点,往年这部分的常考证明题这种大题。然而最近两年没考这一部分大题。2014年的高数证明题考的函数不等式的证明,而2015出乎意料地考了一个用导数定义证明求导公式的证明题。虽然这两年没有考这部分的大题,但作为以前常考大题的考点,所以我们不能对这部分内容掉以轻心。

  首先对于中值定理我们应该把这部分的定理内容弄清楚。我们要用这些定理去证明别的结论,先要自己把这些内容弄透、弄熟。具体来说,关于这部分涉及的定理有:费马引理、罗尔定理、拉格朗日定理、柯西定理、零点存在定理、介值定理、最值定理和积分中值定理。前四个定理属于微分中值定理的部分,中间三个定理属于闭区间上连续函数的性质,最后一个为积分相关定理。而这里,除了闭区间上连续函数的性质这几个定理外,其余定理是要求我们会证明的。

  其次,我们在现阶段应总结真题中考过的此类题目的处理思路。这部分工作可以自己完成,但可能需要花费一些时间。

  中值相关证明大部分情况下应从结论出发。考研中所要求的关于中值定理这块的证明百分之六十到七十都是要去用罗尔定理来证明的。在做此类证明时,我们要看所要证明的式子是含一个中值还是两个中值,紧接着要看所要求的中值是属于开区间还是闭区间的。如果是在含有一个中值的前提下,再看是否含有导数。若是含一个中值,且这个中值时属于开区间的,并且有含有导数,这时我们往往要考研罗尔定理。在确定用罗尔定理的前提下,紧接着我们就是构造辅助函数并且找两个点的函数值相等,当然这里我们在找两个相等点时,不一定要求是找区间的端点,也有可能是区间内部的点。如果含有一个中值,中值所属于的区间是开区间或者是闭区间,并且不含有导数,那考虑闭区间上连续函数的性质,在第一章闭区间上连续里我们有两个常用的定理--零点定理和介值定理。如果区间是开区间则选择零点定理,如果区间是闭区间则选择介值定理来证明。

  说到这里,一个中值的情况我们就分析完了。下面我们主要谈谈如何考虑两个中值的情况。如果需要证明的式子中含有两个中值,这个时候我们要考虑需要用几次定理来证明。我们知道用一次定理得到的式子只含有一个中值,即使是比较麻烦的柯西中值定理也是这样。因此,若是要出现两个中值,那一定是用了两次中值定理。当然,我们在用两次定理后,这时一定会得到两个式子,而最终所得到的式子含两个中值应该为前面我们所得到的两个式子合并后的结果。根据历年真题的详细解读,含有两个中值的情况一般我们会考虑用两次拉格朗日中值定理或一次拉格朗日中值定理和一次柯西定理。具体怎么用这个两个定理,以及如何选择辅助函数,我们一般可以通过所要证明的式子来确定。

  如果所要证明的式子有三个中值,这种情况和上面两个中值的情况是类似的。一般情况下,如果三个中值要求是不同点,则一般分区间,我们可以考虑利用三次拉格朗日中值定理来处理。

  因此,对于这一块的有关中值定理的内容,要从中值出发,找相关的特质点,来确定所用是哪一个中值定理,到底用一次还是用两次。又或者两个结合起来用,又或者用三次中值定理来解决。无论怎样,把基本定理整明白,理清我们上面分析真题的思路和方法。当然有上述这些情况的分析,并不是就可以解决掉所有有关这方面的题目了,毕竟是真题,它其中的变形是多样的,因此,在我们有了上述大题分析题目的思路情况下,还需要把各个细节给打通。所以当我们确定用罗尔定理了,紧接着要考虑的就是辅助函数的构造,以及要找函数值相等的点。又或者当我们确定用拉格朗日中值定理或柯西中值定理时,也需要我们考虑有关辅助函数的构造。因此,如何选择中值定理,如何考虑辅助函数的构造是需要我们仔细琢磨,慢慢精通的。

  考研数学高数7大中值定理详解

  七大定理的归属。

  零点定理与介值定理属于闭区间上连续函数的性质。三大中值定理与泰勒定理同属于微分中值定理,并且所包含的内容递进。积分中值定理属于积分范畴,但其实也是微分中值定理的推广。

  对使用每个定理的体会

  学生在看到题目时,往往会知道使用某个中值定理,因为这些问题有个很明显的特征—含有某个中值。关键在于是对哪个函数在哪个区间上使用哪个中值定理。

  1、使用零点定理问题的基本格式是“证明方程f(x)=0在a,b之间有一个(或者只有一个)根”。从题目中我们一目了然,应当是对函数f(x)在区间[a,b]内使用零点定理。应当注意的是零点定理只能说明零点在某个开区间内,当要求说明根在某个闭区间或者半开半闭区间内时,需要对这些端点做例外说明。

  2、介值定理问题可以化为零点定理问题,也可以直接说明,如“证明在(a,b)内存在ξ,使得f(ξ)=c”,仅需要说明函数f(x)在[a,b]内连续,以及c位于f(x)在区间[a,b]的值域内。

  3、用微分中值定理说明的问题中,有两个主要特征:含有某个函数的导数(甚至是高阶导数)、含有中值(也可能有多个中值)。应用微分中值定理主要难点在于构造适当的函数。在微分中值定理证明问题时,需要注意下面几点:

  (1)当问题的结论中出现一个函数的一阶导数与一个中值时,肯定是对某个函数在某个区间内使用罗尔定理或者拉格朗日中值定理;

  (2)当出现多个函数的一阶导数与一个中值时,使用柯西中值定理,此时找到函数是最主要的;

  (3)当出现高阶导数时,通常归结为两种方法,对低一阶的导函数使用三大微分中值定理、或者使用泰勒定理说明;

  (4)当出现多个中值点时,应当使用多次中值定理,在更多情况下,由于要求中值点不一样,需要注意区间的选择,两次使用中值定理的区间应当不同;

  (5)使用微分中值定理的难点在于如何构造函数,如何选择区间。对此我的体会是应当从需要证明的结论入手,对结论进行分析。我们总感觉证明题无从下手,我认为证明题其实不难,因为证明题的结论其实是对你的提示,只要从证明结论入手,逐步分析,必然会找到证明方法。

  4、积分中值定理其实是微分中值定理的推广,对变上限函数使用微分中值定理或者泰勒定理就可以得到积分中值定理甚至类似于泰勒定理的形式。因此看到有积分形式,并且带有中值的证明题时,一定是对某个变上限积分在某点处展开为泰勒展开式或者直接使用积分中值定理。当证明结论中仅有积分与被积函数本身时,一般使用积分中值定理;当结论中有积分与被积函数的导数时,一般需要展开变上限积分为泰勒展开式。

  考研数学概率部分复习的4个突破口

  在文字叙述题上下功夫

  考生一方面多做些题目,尤其是文字叙述的题目,逐渐提高自己分析问题的能力。另一方面花点时间准确理解概率论与数理统计中的基本概念。考生在复习过程中可以结合一些实际问题理解概念和公式,也可以通过做一些文字叙述题巩固概念和公式。只要针对每一个基本概念准确的理解,公式理解的准确到位,并且多做些相关题目,再遇到考卷中碰到类似题目时就一定能够轻易读懂和正确解答。

  会用公式解题

  概率论与数理统计中的公式不仅要记住,而且要会用,要会用这些公式分析实际中的问题。我在这里推荐一个记忆公式的方法,就是结合实际的例子和模型记忆。比如二向概率公式,你可以用这样一个模型记忆,把一枚硬币重复抛N次,正面朝上的概率是多少呢?这样才是在理解基础上的记忆,记忆的东西既不容易忘,又能够正确运用到题目的解决中。

  对概率论与数理统计的考点整体把握

  考研中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。所以对于第一条中所讲的古典概型与几何概型这部分,只要掌握一些简单的概率计算就可,把大量精力放在随机变量的分布上。数理统计的考查重点在于与抽样分布相关的统计量的分布及其数字特征。

  心理上要重视

  考研数学试题中有关概率论与数理统计的题目对大多数考生来说有一定难度,这就使得很多考完试的同学感慨万千,概率题太难了!同时也为学弟学妹们传达了概率题目难的信息。所以同学们在复习之前就已经有了先入为主的看法:概率比较难!

  但同学们没有注意到,在自己复习之初做得准备都是关于高等数学(微积分)的,在概率上的时间本身就不足。而且如果你的潜意识中觉得一件事情难的话,那么那件事情对你来说就真的很难。我一直认为,人的潜力是非常巨大的。这也与“有多少想法,就有多大成就”的说法相合。

  如果你相信自己,那么概率复习起来是简单的,考试中有关概率的题目也是容易的,数学满分不是没有可能的。那么,从现在开始,在心理上告诉自己:概率并不难!

  在认真熟悉教材上的原理与概念,深刻了解基本概念、基本性质。在同学们以后的复习过程中注意以下几个问题,通过做题来检验自己的复习程度。

  概念不清,只会背不会运用;不能正确地选择概率公式去证明和计算;不能熟练地应用有关的定义、公式和性质进行综合分析、运算和证明。

  分析有误,概率模型搞错。

  考研数一数二数三区别

  一、区别

  数学分为三类,最大的区别在于知识面的要求上:数学一最广,数学三其次,数学二最低。这个差异体现在细节上,就成了数学一、二、三在考试内容和适用专业上的不同之处。

  数学一:针对对数学要求较高的理工类

  (1)考试内容:

  a.高等数学(函数、极限、连续、一元函数微积分学、向量代数与空间解析几何、多元函数的微积分学、无穷级数、常微分方程);

  b.线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);

  c.概率论与数理统计(随机事件和概率、随机变量及其概率分布、二维随机变量及其概率分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。

  (2)适用专业:

  a.工学门类的力学,机械工程,光学工程,仪器学与技术,冶金工程,动力学工程及工程物理,电气工程,电子科学与技术,信息与通信工程,控制科学与工程,计算机科学与技术,土木工程,水利工程,测绘科学与技术,交通运输工程,船舶与海洋工程,航空宇航科学与技术,兵器科学与技术,核科学与技术,生物医学工程等一级学科中所有的二级学科,专业。

  b.工学门类的材料与工程,化学工程与技术,地质资源与地质工程,矿业工程,石油与天然气工程,环境科学与工程等一级学科中对数学要求较高的二级学科,专业。

  c.管理学门类中的管理科学与工程一级学科。

  数学二:针对对数学要求低一些的农、林、地、矿、油等专业

  (1)考试内容:

  a.高等数学(函数、极限、一元函数微积分学、常微分方程);

  b.线性代数(行列阵、矩阵、向量、线性方程组、矩阵的特征值和特征向量)。

  (2)适用专业:工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程第一级学科中所有的二级学科、专业。

  数学三:针对管理、经济等方向

  (1)考试内容:

  a.微积分(函数、极限、连续、一元函数微积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);

  b.线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);

  c.概率论与数理统计(随机事件和概率、随机变量及其概率分布、二维随机变量及其概率分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。

  (2)适用专业:

  a.经济学门类的理论经济学一级学科中的所有二级学科、专业;

  b.经济学门类的应用经济学一级学科中的统计学科、专业、统计学、数量经济学、国民经济学、区域经济学、财政学(含税收学)、金融学(含保险学)、产业经济学、财政学(含税收学)、金融学(含保险学)、产业经济、国际贸易学、劳动经济学、国防经济。

  c.管理学门类的工程管理一级学科中的二级学科、专业;企业管理(含财务管理、市场营销、人力资源管理)、技术经济及管理、会计学、旅游管理。

  d.管理学门类的农林经济管理一级学科中的所有二级学科、专业。

  二、难度系数

  数一考得比较全面,高数,线代,概论都考,而且题目偏难。数二不考概论,而且题目较数一容易。数三考得也很全面,题目的难度不比数一简单多少。

  有些人认为数一比数三难很多,其实不然,注重的领域不同,所以难度无法进行比较。数一题目涉及范围广,而且有时需要形象思维,难度也不低。数三虽然大纲内容比数一少,但题目精,难度不是想象中的那么简单。

【考研数学高数中值定理的详解】相关文章:

考研数学高数重要定理证明汇总01-26

考研数学高数定理证明的知识点12-02

考研数学高数复习的方法12-06

考研数学高数考试的重点12-06

考研数学高数复习的要点12-03

考研数学高数高效复习的关键12-05

考研数学高数高效复习的重点12-06

考研数学高数拿高分的技巧12-06

考研数学如何透过真题规划微分中值定理的复习方向12-05