考研备考 百文网手机站

考研数学极限有哪些运算方法和适用情况

时间:2021-12-02 18:20:34 考研备考 我要投稿

考研数学极限有哪些运算方法和适用情况

  极限是整个高等数学学习的工具,我们在考研数学的时候,要掌握好运算方法和适用情况。小编为大家精心准备了考研数学极限的计算方法指南,欢迎大家前来阅读。

考研数学极限有哪些运算方法和适用情况

  考研数学极限七种运算方法及适用情况

  基础阶段,我们的目标是三基本:基本概念、基本定理、基本方法,因此在基础阶段学习极限应从两个方面着手,一是极限的定义,二是极限的运算。极限的定义在考试大纲中明确要求是理解,理解的意思并不是会背诵定义内容,而是能够领会定义内容背后的所蕴含的含义,正确理解所代表的任意小以及代表的距离。

  除定义本身以外,极限的趋近状态也要注意区分,对于函数来说有六种趋近状态:各自的含义要非常清楚,而数列只有一种趋近状态,虽然没有指明,但是数列里边的隐含之意为。

  极限的计算则需要首先掌握考研数学要考到的七种基本方法,知道七种方法适用的情况。

  第一种是四则运算,此方法大家最为熟悉,但比较容易出错,需要注意使用四则运算的前提是进行运算的函数极限必须都是存在的;

  第二种是等价无穷小替换,这一方法比较受欢迎,而且很多极限计算的问题只需经过等价无穷小代换就能得出结果,不需再使用其他方法,需要注意的是等价无穷小代换前提必须首先是无穷小才可代换,另外只能在乘积因子内代换(有些是可以在加减因子中代换的,但是在没有十足把握的情况下应避免使用在加减因子中代换);

  第三种是洛必达法则,适用于及 型未定式,在使用的过程中需要注意一下几点:

  1、洛必达法则必须结合等价无穷小使用;

  2、使用一次整理一次;

  3、其他类型未定式需要转化成 及 型才可以使用洛必达法则等;

  第四种是泰勒展式,这是解决极限问题的利器,在基础阶段不必要求掌握如何使用,只需了解泰勒展式的内容即可,具体使用原则会在强化阶段给出;

  第五种是夹逼定理,主要用于解决含有不等式关系的极限问题,特别应用于 个分式之和的数列极限问题,通过放缩分母来达到出现不等关系的目的;

  第六种是定积分的定义,与夹逼定理相区别,夹逼定理解决的问题放缩分母后分子可用一个式子去表示,而定积分的定义可解决夹逼定理不能解决的问题,通过主要的三步:1、提取,2、凑出,3、极限符号及连加符号改写为,改写为,改写为计算定积分即可解决个分式之和的数列极限问题;

  第七种方法是适用于数列极限的单调有界性定理,难点在于如何确定证明方向,一般单调有界性定理适用于由递推公式给出的数列极限问题,因此可采取数学归纳法证明有界性,做差的办法证明单调性。

  以上,从大的框架结构上给出了极限一章极限定义和极限计算的常用方法,希望同学们对这一章有一个宏观的把握,但是具体的细节掌握还要待进一步细致的学习。在复习的过程中要多留心多总结把重要的方法记录下来,错题记录下来方便后续的自我检查。

  考研数学复习巧答证明题的方法

  1.结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。

  知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

  2.借助几何意义寻求证明思路

  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

  3.逆推法

  从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要证的不等式。

  对于那些经常使用如上方法的考生来说,利用三步走就能轻松收获数学证明的12分,但对于从心理上就不自信能解决证明题的考生来说,却常常轻易丢失12分,后一部分同学请按“证明三步走”来建立自信心,以阻止考试分数的白白流失。

  考研数学备考的'禁忌

  一、复习初期,禁止“眼高、手高“不下手

  复习初期,大部分考生的心情还比较浮躁,特别是有部分程度较好的考生,认为这些内容已经学过了,并且当时学得很好,期末考了很不错的分数,现在只把教材上的内容扫一遍就可以了,复习时不够认真,只是看书而疏于动手练习。持续一两个月之后,这样的考生就会发现自己经常遇到这样一种状况:拿到题目后自己做,没有思路;看过答案之后,一步一步又好像全都明白,再做,还是无从下手。这正是眼高手低的典型表现。

  “眼高手低”是很多考生在复习数学时易犯的错误,很多考生对基础性的东西不屑一顾,认为这些内容很简单,用不着下劲复习,还有的考生只是“看”,认为看懂就行了,很少下笔去做题,结果在最后的考试中眼熟手生,难以取得好的成绩。所以,在我们还没有建立起来完备的知识结构之前,一带而过的复习必然会难以把握题目中的重点,忽略精妙之处。题目看懂了不代表这个题目就会做了,其实真正动手就会碰到很多问题,去解决这些问题就是提高自己的过程。只有通过动手练习,我们才能规范答题模式,提高解题和运算的熟练程度,这些都要通过自己不断的摸索练习来加以体会。

  二、做题,需要注重总结归纳

  有一部分考生认为:归纳总结是复习进行到后期才做的事情,现在只要能熟悉大纲的知识点及考察重点,把遇到的题都做会就可以了。确实,数学的复习离开了做题不行,但沉浸在题海里,每天做许多题目,从来不总结,这样的结果往往是做错的题目再次做时还是会犯错。及时的归纳和总结,才能将你所做的大量题目变为自己掌握的知识,将你的数学基础和结构体系夯实打牢。

  比如说:求极限的方法大体超不过七种:1分子分母同乘同除2变量代换3非零因子的提出4罗比答法则5等价无穷小6夹逼7台勒公式。再比如:级数敛散性的判别方法:1一般比较法2极限比较法3比值法4根值法;再比如线性代数中证明线性无关的方法有:1定义法(同乘或拆项重组)2秩判别法3齐次方程AX=0只有零解4反证法。等等。需要说明的是,方法虽然提倡越多越好,但是课本上没有的或是超纲的我们就没有必要深究了,比如说有的考研辅导书所介绍的微分算子法来求解微分方程,我觉得就没有必要去记忆它,毕竟这个方法有其局限性,不是面面俱到。若沉迷于此技巧的话,考试中出的题恰好是它的盲区,那就亏大了!有的书还介绍分布积分的表格法,速度确实挺快,但是也有局限性,不太容易灵活应用,况且一般的方法也慢不到哪去,为什么还要多此一举呢?所以说在总结方法时不在于多,而在于精。核心是有助于自己的解题习惯,使自己更加方便的征服考题。

  三、坚持到底,拒绝“三天打渔两天晒网”

  还有的考生认为现在离考试还远,没有紧迫感。今天没事干就看看书做两个题,明天有些事情就把书放在一边不理会了。这样的结果是看了后面忘了前面,知识没有连续性,形不成体系。考研的路程是漫长的,数学的学习是枯燥的,在复习过程中需要考生具有坚强的毅力。虽然2013的数学考试大纲未颁布,但万变不离其宗,考研数学的基本内容一般变化不大,考生可以参照去年的大纲和试题进行复习。详细了解本专业应考的数学卷种的基本要求,考试的题型、类别和难易度,以便更好的展开复习。凡是在大纲中表述为“会”、“理解”、“掌握”等的考试内容往往都是主要考点,务必要作为复习的重点。

  数学复习不像英语、政治对辅导书的依赖性很大,主要靠课本来打下坚实的基础。翻一下数学大[微博]纲,上面列出的知识点全部来源于课本。所以考生一定要老老实实参照大纲的要求把原来的课本找出来,按照大纲对数学基本概念、基本方法、基本定理准确把握。数学学习中最重要的莫过于坚实的基础,包括对定理公式的深入理解,对基本运算的熟练和高正确率,对最基本的一些解题方法的掌握和运用。

  最后,数学教研室李老师提示大家:最深刻的道理,往往存在于最简单的事实之中。考生们要仔细、认真地分析每道题的考点,无论是多难的题目,最后都归结到数学课本上的知识点。重视基础,就是搞好第一轮数学复习的关键,更是一种态度,“态度决定一切”。


【考研数学极限有哪些运算方法和适用情况】相关文章:

考研数学极限的运算方法及适用情况12-06

考研数学极限七种运算方法及适用情况11-17

考研数学有哪些解题方法06-10

考研数学有哪些复习的方法12-05

考研数学复习的方法有哪些12-06

考研学好数学的方法有哪些06-09

考研数学复习有哪些答题的方法12-04

考研数学极限与导数复习方法06-10

考研数学有哪些常规题型和陌生题型解答方法06-10