考研备考 百文网手机站

考研数学知识点综合复习指导

时间:2021-12-02 15:23:49 考研备考 我要投稿

考研数学知识点综合复习指导

  考研生们在准备考研数学时,要了解清楚知识点的重点复习应该如何进行。小编为大家精心准备了考研数学知识点模块归纳,欢迎大家前来阅读。

考研数学知识点综合复习指导

  考研数学各科目的知识模块梳理

  高等数学分为5大知识模块:

  1、一元微积分学;

  2、多元微积分学;

  3、曲线、曲面积分;

  4、无穷级数;

  5、微分方程。

  这里面的曲线、曲面积分是数一的同学特有的,其他内容是所有考数学的同学都要考查的。

  线性代数分为3大知识模块:

  1、行列式和矩阵;

  2、向量和线性方程组;

  3、特征值、特征向量和二次型。

  线性代数部分从考纲来看各个卷种的差别不大,近些年的变化也不大,是考研数学相对稳定的一部分考查内容。

  概率论与数理统计分为3大知识模块:

  1、概率、概率基本性质及简单的概型,

  2、随机变量及其分布与数字特征,

  3、统计基本概念、参数估计及假设检验,这部分是数二的同学不要求的,而数一和数三大纲的要求还是有些差距的,比如数一要求假设检验而数三不要求。

  考研数学复习的两个基础三个基本

  1、基本概念和定义,2、基本性质和定理,3、基本方法和结论。

  接下来详细说下要掌握这第一基础有何妙法可循。

  首先根据14年大纲中的知识点逐一研究教材(同济六版高数;同济5版线数;浙大4版概数),习题方面,自己独立完成,做的时候不要看答案,看题和做题是两个完全不同的效果。

  然后完成对历年真题的一次性全面的浏览,为什么只让你浏览呢?因为,仅仅靠看教材,一般来说是不能做出历年真题的,有时候看懂都可能是个问题,所以,你这一次看真题主要做到两点:一是尽可能消化真题的解答详细过程;二是了解考研数学的命题形式和结构,感受下考卷的深度和命题方式,做到知己知彼,以明确自己目前的水平与考研数学难度的差距以确定自身该下多少工夫。

  其次是完成第一阶段的复习,第一阶段复习是很重要也是费时最长的,一般在校学生由于还有其他课程学习,至少需要4个月,这一阶段的复习过程中,可以同时看看考研辅导书,但切忌精读辅导书,最好是就某一问题释疑,去局部参阅,以达到对教材某一知识点更准确更本质的掌握,为进入第二阶段的复习做好铺垫。

  何谓第二基础或拓展基础,即1、基本概念和定义的拓展,比如:定积分的本质和类型及主要计算思想等等。2、基本性质和定理的拓展,比如:利用定义证明行列式的5大基本性质和阶子式展开定理等等。3、基本方法和结论的拓展,比如:、8大统计枢轴量能解决什么类型的问题等。

  第二基础要掌握好不但要下一番大工夫,还要有一个好的复习流程一、选一本适合自己的考研辅导书,精读这本考研数学辅导书,多看和消化例题,等积累了别人做题的部分经验和技巧后,再做后面的练习题,最好是按照考研大纲章节顺序进行。在看题和做题的过程中多思考,多问为什么,为什么这道题是这样解答?它主要牵涉了哪些知识点?有没有更好的方法(即技巧)?必要的时候再适当翻阅其他辅导书对同类问题是不是有更精妙的分析和方法?然后问题就会慢慢暴露出来,再同步认真研究历年真题在这一知识点是如何命题的,这一问题还可以如何发散?最后完整归纳(即聚合)这一知识点的系统题型和题法,做题时尽可能把问题归类发散,思考变式,这时你要及时做好总结压缩笔记,从而慢慢巩固第二基础。

  二、巩固第二基础又称第二阶段复习,一般需要3个月左右,主要在暑假,第一阶段感觉有点吃力的同学在这阶段借助面授辅导班来巩固比较好。

  第一基础和第二基础都掌握的得心应手了还不够,除此之外,至少还需要做一本完整的`综合练习题集,因为考研数学整个备考过程中,包括教材例题和练习题、真题、辅导书例题和练习题、综合练习题集、综合模拟卷、冲刺模拟卷等等全部之和一般在3000道以上。第二基础复习完又做完一本完整的综合练习题集的同学,建议把做过的题和掌握的技巧及其第二基础重复一次,压缩笔记要做好。数学贵在思考,难在总结,而思考和总结的关键在于重复。

  考研数学高效复习的技巧

  结合几何意义记住基本原理

  重要的定理主要包括零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。

  知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

  借助几何意义寻求证明思路

  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

  逆推法

  从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设F(x)=lnx-lna-4(x-a)/e*,其中eF(a)就是所要证的不等式。


【考研数学知识点综合复习指导】相关文章:

考研数学高等知识点复习指导11-14

考研数学线代知识点的复习指导06-10

考研复习指导:数学暑期复习08-20

考研数学复习技巧指导06-30

考研数学复习的技巧指导12-06

考研数学考前的复习指导06-08

考研数学各知识点难点分析及复习指导12-05

考研数学基础复习的重点指导06-10

考研数学复习拿高分的指导06-10