研究生考试

考研数学(二)函数极限怎么算

时间:2024-07-31 05:00:10 研究生考试 我要投稿
  • 相关推荐

2018考研数学(二)函数极限怎么算

  根据历年经验,往年的数学(二)计算函数极限是一个重要知识点,预计在2018考研的数学(二)科目中依然会出现计算函数极限的题目,那么,数学(二)函数极限怎么算呢?下面百分网小编带大家一起来系统详细地研究这个知识点,希望对大家有所帮助!想了解更多相关信息请持续关注我们应届毕业生考试网!

2018考研数学(二)函数极限怎么算

  在往年的数学(二)考试大纲中,明确要求考生“掌握极限存在的两个准则,并会利用它们求极限”(单调有界准则和夹逼准则),“掌握利用两个重要极限求极限的方法”,“会用等价无穷小量求极限”,理解并会用泰勒定理,“掌握用洛必达法则求未定式极限的方法”。

  (一)计算函数极限的主要方法

  计算函数极限的方法主要有如下几种:

  (1)利用两个重要极限求函数极限;

  (2)用等价无穷小量替换求函数极限;

  (3)用泰勒展开式求函数极限;

  (4)用洛必达法则求未定式函数极限,这是求函数极限的最重要的方法,在实际解题中可能多次迭代使用该法则;

  (5)用凑极限法求函数极限,即凑出题设中已知极限的函数式,从而较好地利用题设条件。分子有理化或者分母有理化,以达到简化函数式或者为应用其它方法提供条件。

  在具体的解题实践中,可能要多种方法并用,从而正确、简洁、快速地求出函数极限。在计算较复杂函数的极限时,往往需要利用等价无穷小量替换对该函数进行多次化简,这是一个值得重视的解题技巧。但是该技巧只能在乘除法中使用,在加减法中不能使用;换言之,只能对被极限式的分子或者分母的因子应用等价无穷小量替换。而解题过程中,及时提取出函数中极限为非零的因子也可以简化被极限式。

  (二)常用的等价无穷小量和泰勒展开式

  常用的等价无穷小量如下所述,掌握它们后可以简化解题过程,应用泰勒展开式可以推导出更多等价无穷小量。

  (三)真题解析

  下面请随文都教育看一下2015年数学(二)科目中考察计算函数极限的两道真题及解析,体会解题方法和技巧,以便牢固掌握该知识点。

  本文系统讨论了2018考研数学(二)科目中计算函数极限的方法,并给出了往年数学(二)试卷中2道真题的解析,希望能对考生复习备考有所帮助。

【考研数学(二)函数极限怎么算】相关文章:

数学教案:二次函数的图象04-03

汽车购置税怎么算12-12

excel表格怎么用subtotal函数11-19

c语言数学函数的介绍10-20

初二数学《一次函数的图象(二)》教学设计03-31

PHP怎么执行Linux系统命令函数11-26

初二上册数学变量与函数同步练习题03-29

二次函数教案通用02-20

二次函数的教学教案04-02