关于小升初数学应用题及答案
关于小升初数学应用题及答案1
小李和小阳两个学校的学生到烈士墓去,所去人数都是10的倍数,租14座的中巴一共要72辆,如果改租19座的中巴,小李比小阳多用车7辆,两校参加扫墓的学生各多少人?
解:充分利用10的'倍数。
两个学校共有人数比1472=1008人少,比1471=994人多,即共有1000人。
改租19座的中巴后,可以乘坐100019=52辆12人,即53辆车。
所以小李学校租车(53+7)2=30辆车,小阳学校租车30-7=23辆。
所以小李学校有学生3019=570人,小阳学校有学生1000-570=430人。
验证一下:
如果小李少10人,还是30辆车,小阳学校有学生430+10=440人
44019=23辆3人,需要24辆车,相差30-24=6辆,不符合要求。
两校参加扫墓的学生共有:1472=1008(人)
因去的人数是10的倍数,车辆不能超员,所以学生总数1000人;
设:小李学生数为x,则小阳学生数为1000-x
小李租19座的中巴数 = x/19
小阳租19座的中巴数 = (1000-x)/19
x/19 - (1000-x)/19 = 7
2x - 1000 = 7*19
2x = 1133
小李学生数为 x = 570(人)
小阳学生数为 1000-x = 430(人)
关于小升初数学应用题及答案2
应用题:
1.修一条水渠,第一周修了全长的15 ,正好是600米,第二周修了全长的35%,第二周修了多少米?
2.文具店运进红蓝墨水65箱,当红墨水售出11箱,蓝墨水售出20%后,剩下的红蓝墨水相等。问售出蓝墨水多少箱?
3.修路队三天修完一段路。第一天修了全长的25%,第二天修了400米,第三天和第二天修路的长度比是5︰4.这段路长是多少米?
4.做一种零件,8人0.5小时完成64个,照这样计算,3小时要完成144个零件,需要多少个工人?
5.一件工程,甲、乙两人合作18天可以完成。甲单独做要30天完成。现在由甲、乙两人合作6天后,再由甲独做10天,这件工程还剩几分之几?
6,某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
答案:
1,解:600÷1/5=3000(米)
3000*35%=1050(米)
答:第二周修了1050米。
2,解:设售出蓝墨水为X箱,那么蓝墨水有X÷20%=5X箱
红墨水有(65-5X)箱
65-5X)-11 = 4X
X = 6(箱)
答:售出蓝墨水6箱。
3,解:设全长是X米
3/4)X-400 : 400 = 5 : 4
X = 1200(米)
答:全长为1200米。
4,8个人0.5小时做64个,
1个人1个小时就做16个,
1个人3个小时就做48个
144÷48=3
所以,需要3个人
答:需要3个人。
5,解:设这个工程为单位1.
1÷18=1/18 (甲乙的`效率和)
1÷30=1/30 (甲的效率)
1/18 * 6= 6/18
1/30 * 10=10/30
1-(6/18)-(10/30)=1/3
答:还剩下1/3.
6,原来每天的利润是72×25%×100=1800元
后来每件的利润是是72÷(1+25%)×(1-90%)=9元
后来每天获得利润100×2.5×9=2250元
所以,增加了2250-1800=450元
答:增加了450元。
关于小升初数学应用题及答案3
1. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
因为33÷8=4...1,33÷5=6...3,即都有余数,所以,既不可能两户都达到或超过50度用电量,也不可能两户都未达到50度用电量,因此只有一种情况:
2. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
效率比原来降低1/5,即变为原来的4/5,那么所用时间就是原来的5/4,比原来多用:
5/4-1=1/4
所以,推迟的20分钟就是原来完成160个零件所用时间的1/4。原来完成160个零件需要:
20/(1/4)=80分钟
这批零件共有:160/(80/120)=240个。
160个的时间比是4:5,相差1份,是20分钟
4份是80分钟
160个前做了120-80=40分,
80分160个,40分160/2=80
160+80=240
我也来做一种方法:
推迟的20分钟,即1/3小时相当于后来用时的1/5,所以,后来用时1/3÷1/5=5/3小时
原来的工效做160个零件就用了5/3-1/3=4/3小时。
所以,每小时可以完成160÷4/3=120个
2小时完成任务,这批零件就有120×2=240个
33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张0.50元,丙种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
买甲比买丙多8+6=14张,而丙每张比甲贵0.70元,多买14张甲一共0.50*14=7元,所以可以支付丙7/0.70=10张,钱数一共是1.20*0=12元,可以买乙10+6=16张,所以乙的价钱是12/16=0.75元。
34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
我的思路是这样的。
三个儿子共拿出1200×3=3600元,
这3600元刚好就是两个儿子应该分得的钱。
每个儿子应该分得3600÷2=1800元。
三间房子共值1800×5=9000元,
那么每间房子值9000÷3=3000元。
再做一种思路:
每人应该分得3÷5=3/5间房子,那么分得房子的就多分了1-3/5=2/5间
也就是说2/5间房子值1200元,所以每间房子值1200÷2/5=3000元
继续分享算法:
如果还有5-3=2间房子,每人都分得房子,那么就要拿出1200×5=6000元
所以,每间房子值6000÷2=3000元。
35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
我的思考如下:
小燕两次相差2A,且两次相差总画册的1/3-1/4=1/12
当A=1时,两人的总和是2÷1/12=24本,少于38本
当A=2时,两人的总和是4÷1/12=48本,多于38本
所以,A=1
第一次交换,小燕有24×1/3=8本,
原来小燕有8-1=7本
小明有24-7=17本
36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
先理清思路:根据题意可以得出下面的关系。
37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
充分利用年龄差来解答问题。
妹妹:9岁, 哥哥:兄妹差+9 ,爸爸:(兄妹差+9)×3
妹妹:兄妹差, 哥哥:兄妹差×2,爸爸:34岁
因为爸爸和哥哥的年龄差也将恒定不变。
所以,(兄妹差+9)×2=34-兄妹差×2
所以,兄妹差是(34-2×9)÷4=4岁
即当妹妹9岁时,哥哥4+9=13岁,爸爸13×3=39岁
三人年龄和是9+13+39=61岁
所以,再过(64-61)÷3=1年,年龄和就是64岁了。
所以,现在妹妹9+1=10岁,哥哥13+1=14岁,爸爸39+1=40岁
38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
我选择让丙先去追后出发的乙,10÷(3-1)=5分钟追上,
拿到信后去追甲,甲乙相距甲行10+10+10+5+5=40分钟的路程,
丙用40÷(3-1)=20分钟追上甲
交换信后返回追乙,这时乙丙相距乙行40+20×2=80分钟的路程,
丙用80÷(3-1)=40分钟追上乙,把信交给乙。
所以,共用了5+20+40=65分钟。
乙共行了65+10=75分钟,丙回到B地还要75÷3=25分钟。
所以共用去65+25=90分钟
又想到一个思路,追上并返回。
追上乙并返回,需要10÷(3-1)×2=10分钟
追上甲并返回,需要10×3÷(3-1)×2=30分钟
再追上乙并返回,需要(10×2+30)÷(3-1)×2=50分钟
共用10+30+50=90分钟
39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
假设全是甲车间的工人,共生产:94*15=1410把;
40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
如果甲的速度和乙相同,那么甲的路程应该是乙的10/14=5/7,比乙少2/7;
而实际甲是乙的6/7,比乙少1/7,是因为甲每分钟比乙多走12米、10分钟共多走12*10=120米。
所以,这120米就是乙路程的2/7-1/7=1/7;
乙回家的路程为:120/(1/7)=840米。
我也做两种基本的方法
方法一:
乙行甲那么远的'路,就要14÷(1+1/6)=12分钟
所以甲回家有12÷(1/10-1/12)=720米
所以乙回家的路程是720×(1+1/6)=840米
方法二:
甲行乙那么所需要的时间是10×(1+1/6)=35/3分钟
所以乙回家的路程是12÷(3/35-1/14)=840米
比实际少生产:1998-1410=588把;
一个甲车间工人换成乙车间的,多生产:43-15=28把;
乙车间共有工人:588/28=21人;
甲车间每天比乙车间多生产:1998-21*43*2=192把。
红球×1/3+黄球×1/4+白球×1/5=160-120=40………………①
红球×1/5+黄球×1/4+白球×1/3=160-116=44………………②
红球+黄球+白球=160………………………………………………③
利用初中的代数消元法思想来解答。
如果按照第一种方案,取160÷40=4次刚好取完,
红球还差4/3-1=1/3,白球就多出1-4/5=1/5,黄球取完了,
说明红球的1/3和白球的1/5相等,红球和白球的个数比是3:5
按照两种方案的比较发现,白球的1/3-1/5=2/15比红球的2/15多4个
即白球比红球多4÷2/15=30个
所以红球有30÷(5-3)×3=45个,白球有45+30=75个
黄球就是160-45-75=40个
甲超过了50度,乙未达到 50度。
因为33=5*5+8,可以得出:
甲用电:50+1=51度,乙用电:50-5=45度。
如果都超过50度,那么相差就应该是8的倍数,显然33不是8的倍数;
如果都没有超过50度,那么相差就应该是5的倍数,同样33也不是5的倍数。
因此,甲50度以上,乙50度以下。
33-8×n的得数是5的倍数(从个位数字可以得出)只有33-8×1=25=5×5符合要求。
所以甲50+1=51度,乙50-5=45度
关于小升初数学应用题及答案4
1. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
原来每天的利润是72×25%×100=1800元后来每件的利润是是72÷(1+25%)×(1-90%)=9元后来每天获得利润100×2.5×9=2250元所以,增加了2250-1800=450元
2. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的`比是3:4,那么A,B两站之间的距离为多少千米?
利用份数来解答:甲车行3份,乙车就行了3×4/5=2.4份,72千米相当于4-2.4=1.6份,每份是72÷1.6=45千米所以A和B两站之间的距离是45×(3+4)=315千米
利用分数来解答:甲车行全程的3/7,乙车就要行全程的3/7×4/5=12/3572千米对应的分率是4/7-12/35=8/35所以全程是72÷8/35=315千米
关于小升初数学应用题及答案5
1. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
答案:
给徒弟加工的零件数加上10*4=40个以后,师傅加工零件个数的1/3就正好等于徒弟加工零件个数的1/4。这样,零件总数就是3+4=7份,师傅加工了3份,徒弟加工了4份。
2. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
答案:
这个题目和第8题比较近似。但比第8题复杂些!
大轿车行完全程比小轿车多17-5+4=16分钟
所以大轿车行完全程需要的时间是16÷(1-80%)=80分钟
小轿车行完全程需要80×80%=64分钟
由于大轿车在中点休息了,所以我们要讨论在中点是否能追上。
大轿车出发后80÷2=40分钟到达中点,出发后40+5=45分钟离开
小轿车在大轿车出发17分钟后,才出发,行到中点,大轿车已经行了17+64÷2=49分钟了。
说明小轿车到达中点的`时候,大轿车已经又出发了。那么就是在后面一半的路追上的。
既然后来两人都没有休息,小轿车又比大轿车早到4分钟。
那么追上的时间是小轿车到达之前4÷(1-80%)×80%=16分钟
所以,是在大轿车出发后17+64-16=65分钟追上。
所以此时的时刻是11时05分。
3. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
答案:
甲每小时完成1/14,乙每小时完成1/20,两人的工效和为:1/14+1/20=17/140;
因为1/(17/140)=8(小时)......1/35,即两人各打8小时之后,还剩下1/35,这部分工作由甲来完成,还需要:
(1/35)/(1/14)=2/5小时=0.4小时。
所以,打完这部书稿时,两人共用:8*2+0.4=16.4小时。
4. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
答案:
黄气球数量:(32+4)/2=18个,花气球数量:(32-4)/2=14个;
黄气球总价:(18/3)*2=12元,花气球总价:(14/2)*3=21元。
5. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
答案:
船的顺水速度:60+20=80米/分,船的逆水速度:60-20=40米/分。
因为船的顺水速度与逆水速度的比为2:1,所以顺流与逆流的时间比为1:2。
这条船从上游港口到下游某地的时间为:
3小时30分*1/(1+2)=1小时10分=7/6小时。 (7/6小时=70分)
从上游港口到下游某地的路程为:
80*7/6=280/3千米。(80×70=5600)
6. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
答案:
由于两个粮仓容量之和是相同的,总共的面粉43+37=80吨也没有发生变化。
所以,乙粮仓差1-1/2=1/2没有装满,甲粮仓差1-1/3=2/3没有装满。
说明乙粮仓的1/2和甲粮仓的2/3的容量是相同的。
所以,乙仓库的容量是甲仓库的2/3÷1/2=4/3
所以,甲仓库的容量是80÷(1+4/3÷2)=48吨
乙仓库的容量是48×4/3=64吨
7. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
答案:
根据题意得:
甲数=乙数×商+2;乙数=丙数×商+2
甲、乙、丙三个数都是整数,还有丙数大于2。
商是大于0的整数,如果商是0,那么甲数和乙数都是2,就不符合要求。
所以,必然存在,甲数>乙数>丙数,由于丙数>2,所以乙数大于商的2倍。
因为甲数+乙数=乙数×(商+1)+2=478
因为476=1×476=2×238=4×119=7×68=14×34=17×28,所以“商+1”<17
当商=1时,甲数是240,乙数是238,丙数是236,和就是714
当商=3时,甲数是359,乙数是119,丙数是39,和就是517
当商=6时,甲数是410,乙数是68,丙数是11,和就是489
当商=13时,甲数是444,乙数是34,丙数是32/11,不符合要求
当商=16时,甲数是450,乙数是28,丙数是26/16,不符合要求
所以,符合要求的结果是。714、517、489三组。
8. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
答案:
这个问题很难理解,仔细看看哦。
原定时间是1÷10%×(1-10%)=9小时
如果速度提高20%行完全程,时间就会提前9-9÷(1+20%)=3/2
因为只比原定时间早1小时,所以,提高速度的路程是1÷3/2=2/3
所以甲乙两第之间的距离是180÷(1-2/3)=540千米
山岫老师的解答如下:
第8题我是这样想的:原速度:减速度=10:9,
所以减时间:原时间=10:9,
所以减时间为:1/(1-9/10)=10小时;原时间为9小时;
原速度:加速度=5:6,原时间:加时间=6:5,
行驶完180千米后,原时间=1/(1/6)=6小时,
所以形式180千米的时间为9-6=3小时,原速度为180/3=60千米/时,
所以两地之间的距离为60*9=540千米
关于小升初数学应用题及答案6
1.一项工程,甲、、乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30.甲、乙单独做这项工程各需要几天?
解:甲做了4天,比乙多做4×1/30=2/15,所以,如果乙做4×2+5=13天,
完成了1-2/15=13/15,所以,乙单独做需要13÷13/15=15天,
那么甲单独做需要1÷(1/15+1/30)=10天。
解:甲乙合作4天乙做5天完成,可以看作是甲做了4天乙做了9天完成。
甲4天比乙4天多做:1/30*4=2/15
即乙做4天后再做9天可以完成:1-2/15=13/15
即乙13天完成13/15,所以乙的效率是:1/15
甲的效率是:1/15+1/30=1/10
即甲单独做要:1/[1/10]=10天,乙单独做要15天
2.有长短两支蜡烛,(相同时间中燃烧长度相同),它们的长度之和为56厘米,将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃前一样长,这时短蜡烛的长度又恰好是长蜡烛的2/3.点燃前长蜡烛有多长?
我们把长蜡烛和短蜡烛的长度差看作1份,那么当长蜡烛同短蜡烛点燃前一样长时,
说明燃了1份,这时,短蜡烛长2份,长蜡烛3份。所以点燃前,短蜡烛长3份,长蜡烛长3+1=4份。所以点燃前长蜡烛长56-24=32厘米。
3.一批苹果平均分装在20个筐中,如果每筐多装1/9,可省下几只筐?
解:把1筐平均分成9份,装入另外的'9筐中,每筐就多装了1/9,说明原来的9+1=10筐,可以装成9筐,每10筐就省下1个筐,所以省下20÷10=2个筐。
解:设总量是单位“1”则一个筐放:1/20现在一个筐放:1/20*[1+1/9]=1/18那么筐数是:1/[1/18]=18只即可以省下:20-18=2只
4.小明买了1支钢笔,所用的钱比所带的总钱数的一半多0.5元;买了1支圆珠笔,所用的钱比买钢笔后余下的钱的一半少0.5元;又买了2.8元的本子,最后剩下0.8元.小明带了多少元钱?
解:还原问题的思考方法来解答。买圆珠笔后余下2.8+0.8=3.6元,买钢笔后余下(3.6-0.5)×2=6.2元,小明带了(6.2+0.5)×2=13.4元
5.儿子今年6岁,父亲10年前的年龄等于儿子20年后的年龄.当父亲的年龄恰好是儿子年龄的2倍时是在公元哪一年?
解:儿子20年后是6+20=26岁,父亲今年26+10=36岁。父亲比儿子大36-6=30岁。
当父亲的年龄是儿子年龄的2倍时,儿子的年龄就和年龄差相同,那么到那时儿子30岁。
所以,是在30-6+20xx=20xx年时。
6.在一条长12米的电线上,黄甲虫在8:20从右端以每分钟15厘米的速度向左端爬去;8:30红甲虫和蓝甲虫从左端分别以每分钟13厘米和11厘米的速度向右端爬去,红甲虫在什么时刻恰好在蓝甲虫和黄甲虫的中间?
解:“恰好在中间”,我的理解是在蓝甲虫和黄甲虫的中点上。
假设一只甲虫A行在红甲虫的前面,并且让红甲虫一直保持在蓝甲虫和A甲虫的中点上。那么A甲虫的速度每分钟行13×2-11=15厘米。当A甲虫和黄甲虫相遇时,就满足条件了。
所以A甲虫出发时,与黄甲虫相距12×100-15×(30-20)=1050厘米。
需要1050÷(15+15)=35分钟相遇。
即红甲虫在9:05时恰好居于蓝甲虫和黄甲虫的中点上。
关于小升初数学应用题及答案7
133.在一环形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到达B点,又过8分钟两人再次相遇.甲、乙环行一周各需要多少分钟?
解:甲乙合行一圈需要8+4=12分钟。乙行6分钟的路程,甲只需4分钟。
所以乙行的12分钟,甲需要12÷6×4=8分钟,所以甲行一圈需要8+12=20分钟。乙行一圈需要20÷4×6=30分钟。
134.甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍.已知甲上午8点经过邮局,乙上午10点经过邮局,问甲、乙在中途何时相遇?
解:我们把乙行1小时的路程看作1份,
那么上午8时,甲乙相距10-8=2份。
所以相遇时,乙行了2÷(1+1.5)=0.8份,0.8×60=48分钟,
所以在8点48分相遇。
135.甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山.他们两人下山的速度都是各自上山速度的2倍.甲到山顶时,乙距山顶还有400米,甲回到山脚时,乙刚好下到半山腰.求从山顶到山脚的距离.
解:假设甲乙可以继续上行,那么甲乙的速度比是(1+1÷2):(1+1/2÷2)=6:5
所以当甲行到山顶时,乙就行了5/6,所以从山顶到山脚的距离是400÷(1-5/6)=2400米。
136.一辆公共汽车载了一些乘客从起点出发,在第一站下车的乘客是车上总数(含一名司机和两名售票员)的1/7,第二站下车的乘客是车上总人数的`1/6,.......第六站下车的乘客是车上总人数的1/2,再开车是车上就剩下1名乘客了.已知途中没有人上车,问从起点出发时,车上有多少名乘客?
解:最后剩下1+1+2=4人。那么车上总人数是
4÷(1-1/2)÷(1-1/3)÷……÷(1-1/6)÷(1-1/7)=28人
那么,起点时车上乘客有28-3=25人。
137.有三块草地,面积分别是4亩、8亩、10亩.草地上的草一样厚,而且长得一样快,第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问第三块草地可供50头牛吃几周?
解法一:设每头牛每周吃1份草。
第一块草地4亩可供24头牛吃6周,
说明每亩可供24÷4=6头牛吃6周。
第二块草地8亩可共36头牛吃12周,
说明每亩草地可供36÷8=9/2头牛吃12周。
所以,每亩草地每周要长(9/2×12-6×6)÷(12-6)=3份
所以,每亩原有草6×6-6×3=18份。
因此,第三块草地原有草18×10=180份,每周长3×10=30份。
所以,第三块草地可供50头牛吃180÷(50-30)=9周
解法二:设每头牛每周吃1份草。我们把题目进行变形。
有一块1亩的草地,可供24÷4=6头牛吃6周,供36÷8=9/2头牛吃12周,那么可供50÷10=5头牛吃多少周呢?
所以,每周草会长(9/2×12-6×6)÷(12-6)=3份,
原有草(6-3)×6=18份,
那么就够5头牛吃18÷(5-3)=9周
138.B地在A,C两地之间.甲从B地到A地去,出发后1小时,乙从B地出发到C地,乙出发后1小时,丙突然想起要通知甲、乙一件重要的事情,于是从B地出发骑车去追赶甲和乙.已知甲和乙的速度相等,丙的速度是甲、乙速度的3倍,为使丙从B地出发到最终赶回B地所用的时间最少,丙应当先追甲再返回追乙,还是先追乙再返回追甲?
我的思考如下:
如果先追乙返回,时间是1÷(3-1)×2=1小时,
再追甲后返回,时间是3÷(3-1)×2=3小时,
共用去3+1=4小时
如果先追甲返回,时间是2÷(3-1)×2=2小时,
再追乙后返回,时间是3÷(3-1)×2=3小时,
共用去2+3=5小时
所以先追乙时间最少。故先追更后出发的。
关于小升初数学应用题及答案8
1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?
答案:甲收8元,乙收2元。
解:
“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。
又因为“甲钓了三条”,相当于甲吃之前已经出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元。
而甲乙两人吃了的价值都是10元,所以
甲还可以收回18-10=8元
乙还可以收回12-10=2元
刚好就是客人出的钱。
2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?
答案22/25
最好画线段图思考:
把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。增加的成本2份刚好是下降利润的2份。售价都是25份。
所以,今年的成本占售价的22/25。
3.甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米?
解:
原来甲.乙的速度比是5:4
现在的甲:5×(1-20%)=4
现在的乙:4×(1+20%)4.8
甲到B后,乙离A还有:5-4.8=0.2
总路程:10÷0.2×(4+5)=450千米
4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?
答案为64:27
解:根据“周长减少25%”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的'9/16。
根据“体积增加1/3”,可知体积是原来的4/3。
体积÷底面积=高
现在的高是4/3÷9/16=64/27,也就是说现在的高是原来的高的64/27
或者现在的高:原来的高=64/27:1=64:27
5.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。橘子正好占总数的13分之2。一共运来水果多少吨?
第二题:答案为65吨
橘子+苹果=30吨
香蕉+橘子+梨=45吨
所以橘子+苹果+香蕉+橘子+梨=75吨
橘子÷(香蕉+苹果+橘子+梨)=2/13
说明:橘子是2份,香蕉+苹果+橘子+梨是13份
橘子+香蕉+苹果+橘子+梨一共是2+13=15份
关于小升初数学应用题及答案9
知识点
(大盈-小盈)÷两次分配的个数差=分配对象数
(大亏-小亏)÷两次分配的个数差=分配对象数
(盈+亏)÷两次分配的个数差=分配对象数
1、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩17块;如果每人搬7块,则少10块砖.这个班少先队有几个人?要搬的砖共有多少块?
2、学校为新生分配宿舍.如果每个房间住3人,则多出22人;如果每个房间多住5人,则空1个房间.问宿舍有多少间?新生有多少人?
3、妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?
答案
1、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩17块;如果每人搬7块,则少10块砖.这个班少先队有几个人?要搬的砖共有多少块?
解:总差为17+10=27(块);
分配之差为7-4=3(块);
所以有少先队员27÷3=9(人)
共有砖:4×9+17=53(块).
答:这个班少先队有9个人,要搬的`砖共有53块。
考点:盈亏问题,一盈一亏
2、学校为新生分配宿舍.如果每个房间住3人,则多出22人;如果每个房间多住5人,则空1个房间.问宿舍有多少间?新生有多少人?
解:第一次盈22人,第二次多出一个房间则是亏3+5=8(人);
总差为22+8=30(人);
两次分配之差为5人,
所以宿舍有30÷5=6(间),
新生共有3×6+22=40(人).
答:宿舍有6间,新生有40人。
考点:盈亏问题
注意点:空出一个房间,则是少了8人入住,则是亏8人
3、妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?
解:其中两人分4个,其余每人分2个,则多出4个"转化为"全家每人都分2个,
多出4+2×(4-2)=8个;
一人分6个,其余每人分4个,则缺少12个"转化为"全家每人都分4个,
缺少12-(6-4)=10个;
由盈亏问题基本公式可知:全家的人数有(8+10)÷(4-2)=9(人)
买来橘子2×9+8=26(个)
考点:盈亏问题
注意点:把每个对象分配的数量转换成一致的
关于小升初数学应用题及答案10
20xx年小升初数学应用题及答案
1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵
需要种的天数是215086=25天
甲25天完成2425=600棵
那么乙就要完成900-600=300棵之后,才去帮丙
即做了30030=10天之后 即第11天从A地转到B地。
2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
这是一道牛吃草问题,是比较复杂的牛吃草问题。
把每头牛每天吃的草看作1份。
因为第一块草地5亩面积原有草量+5亩面积30天长的草=1030=300份
所以每亩面积原有草量和每亩面积30天长的草是3005=60份
因为第二块草地15亩面积原有草量+15亩面积45天长的草=2845=1260份
所以每亩面积原有草量和每亩面积45天长的草是126015=84份
所以45-30=15天,每亩面积长84-60=24份
所以,每亩面积每天长2415=1.6份
所以,每亩原有草量60-301.6=12份
第三块地面积是24亩,所以每天要长1.624=38.4份,原有草就有2412=288份
新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此28880=3.6头牛
所以,一共需要38.4+3.6=42头牛来吃。
两种解法:
解法一:
设每头牛每天的`吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)
解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头
3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
甲乙合作一天完成12.4=5/12,支付18002.4=750元
乙丙合作一天完成1(3+3/4)=4/15,支付15004/15=400元
甲丙合作一天完成1(2+6/7)=7/20,支付16007/20=560元
三人合作一天完成(5/12+4/15+7/20)2=31/60,
三人合作一天支付(750+400+560)2=855元
甲单独做每天完成31/60-4/15=1/4,支付855-400=455元
乙单独做每天完成31/60-7/20=1/6,支付855-560=295元
丙单独做每天完成31/60-5/12=1/10,支付855-750=105元
所以通过比较
选择乙来做,在11/6=6天完工,且只用2956=1770元
4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
把这个容器分成上下两部分,根据时间关系可以发现,上面部分水的体积是下面部分的183=6倍
上面部分和下面部分的高度之比是(50-20):20=3:2
所以上面部分的底面积是下面部分装水的底面积的632=4倍
所以长方体的底面积和容器底面面积之比是(4-1):4=3:4
独特解法:
(50-20):20=3:2,当没有长方体时灌满20厘米就需要时间18*2/3=12(分),
所以,长方体的体积就是12-3=9(分钟)的水量,因为高度相同,
所以体积比就等于底面积之比,9:12=3:4
关于小升初数学应用题及答案11
一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的'.那么小轿车是在上午什么时候追上大轿车的?
解:大轿车行完全程比小轿车多17-5+4=16分钟
所以大轿车行完全程需要的时间是16÷(1-80%)=80分钟
小轿车行完全程需要80×80%=64分钟
由于大轿车在中点休息了,所以我们要讨论在中点是否能追上。
大轿车出发后80÷2=40分钟到达中点,出发后40+5=45分钟离开
小轿车在大轿车出发17分钟后,才出发,行到中点,大轿车已经行了17+64÷2=49分钟了。
说明小轿车到达中点的时候,大轿车已经又出发了。那么就是在后面一半的路追上的。
既然后来两人都没有休息,小轿车又比大轿车早到4分钟。
那么追上的时间是小轿车到达之前4÷(1-80%)×80%=16分钟
所以,是在大轿车出发后17+64-16=65分钟追上。
所以此时的时刻是11时05分。
希望我们准备的小升初经典应用题及答案符合大家的实际需求,愿大家都以优异的成绩考入理想的重点初中院校!
【小升初数学应用题及答案】相关文章:
小升初数学应用题目及答案12-05
小升初的数学应用题及答案03-20
小升初数学的应用题及答案12-04
小升初数学应用题综合训练及答案03-20
小升初数学应用题经典综合训练及答案03-20
小升初数学应用题归类讲解及训练及答案12-04
小升初数学应用题综合训练及答案分析06-08
小升初数学应用题50道「附答案」02-14
小升初的应用题带答案12-05