- 高二数学试题及答案 推荐度:
- 相关推荐
高二数学试题
在平平淡淡的日常中,只要有考核要求,就会有试题,借助试题可以更好地考查参试者所掌握的知识和技能。什么样的试题才是好试题呢?以下是小编精心整理的高二数学试题,欢迎阅读,希望大家能够喜欢。
高二数学试题
一、选择题
1.已知an+1=an-3,则数列{an}是
A.递增数列 B.递减数列
C.常数列 D.摆动数列
解析:∵an+1-an=-30,由递减数列的定义知B选项正确.故选B.
答案:B
2.设an=1n+1+1n+2+1n+3++12n+1(nN),则()
A.an+1an B.an+1=an
C.an+1
解析:an+1-an=(1n+2+1n+3++12n+1+12n+2+12n+3)-(1n+1+1n+2++12n+1)=12n+3-12n+1=-12n+32n+2.
∵nN*,an+1-an0.故选C.
答案:C
3.1,0,1,0,的通项公式为()
A.2n-1 B.1+-1n2
C.1--1n2 D.n+-1n2
解析:解法1:代入验证法.
解法2:各项可变形为1+12,1-12,1+12,1-12,偶数项为1-12,奇数项为1+12.故选C.
答案:C
4.已知数列{an}满足a1=0,an+1=an-33an+1(nN),则a20等于()
A.0 B.-3
C.3 D.32
解析:由a2=-3,a3=3,a4=0,a5=-3,可知此数列的最小正周期为3,a20=a36+2=a2=-3,故选B.
答案:B
5.已知数列{an}的通项an=n2n2+1,则0.98()
A.是这个数列的项,且n=6
B.不是这个数列的项
C.是这个数列的项,且n=7
D.是这个数列的项,且n=7
解析:由n2n2+1=0.98,得0.98n2+0.98=n2,n2=49.n=7(n=-7舍去),故选C.
答案:C
6.若数列{an}的通项公式为an=7(34)2n-2-3(34)n-1,则数列{an}的()
A.最大项为a5,最小项为a6
B.最大项为a6,最小项为a7
C.最大项为a1,最小项为a6
D.最大项为a7,最小项为a6
解析:令t=(34)n-1,nN+,则t(0,1],且(34)2n-2=[(34)n-1]2=t2.
从而an=7t2-3t=7(t-314)2-928.
函数f(t)=7t2-3t在(0,314]上是减函数,在[314,1]上是增函数,所以a1是最大项,故选C.
答案:C
7.若数列{an}的前n项和Sn=32an-3,那么这个数列的通项公式为()
A.an=23n-1 B.an=32n
C.an=3n+3 D.an=23n
解析:
①-②得anan-1=3.
∵a1=S1=32a1-3,
a1=6,an=23n.故选D.
答案:D
8.数列{an}中,an=(-1)n+1(4n-3),其前n项和为Sn,则S22-S11等于()
A.-85 B.85
C.-65 D.65
解析:S22=1-5+9-13+17-21+-85=-44,
S11=1-5+9-13++33-37+41=21,
S22-S11=-65.
或S22-S11=a12+a13++a22=a12+(a13+a14)+(a15+a16)++(a21+a22)=-65.故选C.
答案:C
9.在数列{an}中,已知a1=1,a2=5,an+2=an+1-an,则a等于()
A.-4 B.-5
C.4 D.5
解析:依次算出前几项为1,5,4,-1,-5,-4,1,5,4,发现周期为6,则a2007=a3=4.故选C.
答案:C
10.数列{an}中,an=(23)n-1[(23)n-1-1],则下列叙述正确的是()
A.最大项为a1,最小项为a3
B.最大项为a1,最小项不存在
C.最大项不存在,最小项为a3
D.最大项为a1,最小项为a4
解析:令t=(23)n-1,则t=1,23,(23)2,且t(0,1]时,an=t(t-1),an=t(t-1)=(t-12)2-14.
故最大项为a1=0.
当n=3时,t=(23)n-1=49,a3=-2081;
当n=4时,t=(23)n-1=827,a4=-152729;
又a3
答案:A
二、填空题
11.已知数列{an}的通项公式an=
则它的前8项依次为________.
解析:将n=1,2,3,,8依次代入通项公式求出即可.
答案:1,3,13,7,15,11,17,15
12.已知数列{an}的通项公式为an=-2n2+29n+3,则{an}中的最大项是第________项.
解析:an=-2(n-294)2+8658.当n=7时,an最大.
答案:7
13.若数列{an}的前n项和公式为Sn=log3(n+1),则a5等于________.
解析:a5=S5-S4=log3(5+1)-log3(4+1)=log365.
答案:log365
14.给出下列公式:
①an=sinn
②an=0,n为偶数,-1n,n为奇数;
③an=(-1)n+1.1+-1n+12;
④an=12(-1)n+1[1-(-1)n].
其中是数列1,0,-1,0,1,0,-1,0,的通项公式的有________.(将所有正确公式的序号全填上)
解析:用列举法可得.
答案:①
三、解答题
15.求出数列1,1,2,2,3,3,的`一个通项公式.
解析:此数列化为1+12,2+02,3+12,4+02,5+12,6+02,由分子的规律知,前项组成正自然数数列,后项组成数列1,0,1,0,1,0,.
an=n+1--1n22,
即an=14[2n+1-(-1)n](nN*).
也可用分段式表示为
16.已知数列{an}的通项公式an=(-1)n12n+1,求a3,a10,a2n-1.
解析:分别用3、10、2n-1去替换通项公式中的n,得
a3=(-1)3123+1=-17,
a10=(-1)101210+1=121,
a2n-1=(-1)2n-1122n-1+1=-14n-1.
17.在数列{an}中,已知a1=3,a7=15,且{an}的通项公式是关于项数n的一次函数.
(1)求此数列的通项公式;
(2)将此数列中的偶数项全部取出并按原来的先后顺序组成一个新的数列{bn},求数列{bn}的通项公式.
解析:(1)依题意可设通项公式为an=pn+q,
得p+q=3,7p+q=15.解得p=2,q=1.
{an}的通项公式为an=2n+1.
(2)依题意bn=a2n=2(2n)+1=4n+1,
{bn}的通项公式为bn=4n+1.
18.已知an=9nn+110n(nN*),试问数列中有没有最大项?如果有,求出最大项,如果没有,说明理由.
解析:∵an+1-an=(910)(n+1)(n+2)-(910)n(n+1)=(910)n+18-n9,
当n7时,an+1-an
当n=8时,an+1-an=0;
当n9时,an+1-an0.
a1
故数列{an}存在最大项,最大项为a8=a9=99108
高二数学试题
1、抛物线y=4x2的焦点坐标是________.
2.0是0的__ ____条件.(充分不必要条件、必要不充分、充要条件、既不充分也不必要条件).
3、按如图所示的流程图运算,若输入x=20,则输出的k= __.
4、某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号......第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为_ 的学生
5、口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为_ _
6.已知函数f(x)=f4cos x+sin x,则f4的值为_ ____
7 、中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为2,则双曲线方程为___ ____ ____.
8.曲线C的方程为x2m2+y2n2=1,其中m,n是将一枚骰子先后投掷两次所得点数,事件A=方程x2m2+y2n2=1表示焦点在x轴上的椭圆,那么P(A)=___ __.
9、下列四个结论正确的是_ _ ____.(填序号)
① 0是x+|x|的必要不充分条件;
② 已知a、bR,则|a+b|=|a|+|b|的充要条件是ab
③ 0,且=b2-4ac是一元二次不等式ax2+bx+c0的解集是R的充要条件;
④ 1是x2的充分不必要条件.
10.已知△ABC中,ABC=60,AB=2,BC=6,在BC上任取一点D,则使△ABD为钝角三角形的概率为_ __.
11、已知点A(0,2),抛物线y2=2px(p0)的焦点为F,准线为l,线段FA交抛物线于点B,过B作l的垂线,垂足为M,若AMMF,则p=
12. 已知命题 : xR,ax2-ax-2 0 ,如果命题 是假命题,则实数a的取值范围是_ ____.
13. 在平面直角坐标系xOy中,椭圆x2a2+y2b2=1(a0)的左焦点为F,右顶点为A,P是椭圆上一点,l为左准线,PQl,垂足为Q.若四边形PQFA为平行四边形,则椭圆的离心率e的取值范围是____ ____.
14、若存在过点O(0,0)的直线l与曲线f(x)=x3-3x2+2x和y=x2+a都相切,则a的值是__ __.
二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)
15.(本题满分14分)
已知双曲线过点(3,-2),且与椭圆4x2+9y2=36有相同的焦点.
(1) 求双曲线的标准方程;
(2) 求以双曲线的右准线为准线的抛物线的.标准方程.
17、(本题满分15分)
已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,bR).
(1)若函数f(x)的图象过原点,且在原点处的切线斜率为-3,求a,b的值;
(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.
18、(本题满分15分)
中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=213,椭圆的长半轴与双曲线半实轴之差为4,离心率之比为3∶7.
(1)求这两曲线方程;
(2)若P为这两曲线的一个交点,求cosF1PF2的值.
19、(本题满分16分)
设a{2,4},b{1,3},函数f(x)=12ax2+bx+1
(1)求f(x)在区间(-,-1]上是减函数的概率;
(2)从f(x)中随机抽取两个,求它们在(1,f(1))处的切线互相平行的概率.
20、(本题满分16分)
如图,在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a0)的左、右顶点分别是A1,A2,上、下顶点分别为B2,B1,点P35a,m(m0)是椭圆C上一点,POA2B2,直线PO分别交A1B1,A2B2于点M,N.
(1)求椭圆的离心率;
(2)若MN=4217,求椭圆C的方程;
(3)在第(2)问条件下,求点 Q( )与椭圆C上任意一点T的距离d的最小值.
【高二数学试题】相关文章:
高二数学试题及答案02-29
小升初数学试题03-29
小升初数学试题06-22
初中数学试题03-21
小升初数学试题06-08
小升初数学试题汇总10-25
小学数学试题节选11-23
初中数学试题汇总02-11
小升初数学试题大全10-24