- 高一数学练习题及答案 推荐度:
- 相关推荐
高一数学集合练习题
高一数学是指在高一时学的数学,高一数学的知识掌握较多,高一试题约占高考得分的60%,一学年要学五本书,只要把高一的数学掌握牢靠,高二,高三则只是对高一的复习与补充。下面是小编帮大家整理的高一数学集合练习题,仅供参考,大家一起来看看吧。
高一数学练习题1
一、选择题(每小题5分,共20分)
1.下列命题中正确的( )
①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}可以用列举法表
示.
A.只有①和④ B.只有②和③
C.只有② D.以上语句都不对
【解析】 {0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确;③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示.故选C.
【答案】 C
2.用列举法表示集合{x|x2-2x+1=0}为( )
A.{1,1} B.{1}
C.{x=1} D.{x2-2x+1=0}
【解析】 集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.
【答案】 B
3.已知集合A={x∈N*|-5≤x5},则必有( )
A.-1∈A B.0∈A 3∈A D.1∈A
【解析】 ∵x∈N*5≤x5,高一集合练习题及答案
∴x=1,2,
即A={1,2},∴1∈A.故选D.
【答案】 D
4.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为( )
A.0 B.2
C.3 D.6
【解析】 依题意,A*B={0,2,4},其所有元素之和为6,故选D.
【答案】 D
二、填空题(每小题5分,共10分)
5.已知集合A={1,a2},实数a不能取的值的集合是________.
【解析】 由互异性知a2≠1,即a≠±1,
故实数a不能取的值的集合是{1,-1}.
【答案】 {1,-1}
6.已知P={x|2<x<a,x∈N},已知集合P中恰有3个元素,则整数a=________.
【解析】 用数轴分析可知a=6时,集合P中恰有3个元素3,4,5.
【答案】 6
三、解答题(每小题10分,共20分)
7.选择适当的方法表示下列集合集.
(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;
(2)大于2且小于6的有理数;
(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的`集合.
【解析】 (1)方程的实数根为-1,0,3,故可以用列举法表示为{-1,0,3},当然也可以用描述法表示为{x|x(x2-2x-3)=0},有限集.
(2)由于大于2且小于6的有理数有无数个,故不能用列举法表示该集合,但可以用描述法表示该集合为{x∈Q|2<x<6},无限集.
(3)用描述法表示该集合为
M={(x,y)|y=-x+4,x∈N,y∈N}或用列举法表示该集合为
{(0,4),(1,3),(2,2),(3,1),(4,0)}.
8.设A表示集合{a2+2a-3,2,3},B表示集合
{2,|a+3|},已知5∈A且5?B,求a的值.
【解析】 因为5∈A,所以a2+2a-3=5,
解得a=2或a=-4.
当a=2时,|a+3|=5,不符合题意,应舍去.
当a=-4时,|a+3|=1,符合题意,所以a=-
4.
9.(10分)已知集合A={x|ax2-3x-4=0,x∈R}.
(1)若A中有两个元素,求实数a的取值范围;
(2)若A中至多有一个元素,求实数a的取值范围.
【解析】 (1)∵A中有两个元素,
∴方程ax2-3x-4=0有两个不等的实数根,
?a≠0,99∴?即a>-16.∴a>-16a≠0. ?Δ=9+16a>0,
4(2)当a=0时,A={-3};
当a≠0时,若关于x的方程ax2-3x-4=0有两个相等的实数根,Δ=9+16a=0,
9即a=-16
若关于x的方程无实数根,则Δ=9+16a<0,
9即a16;
9故所求的a的取值范围是a≤-16a=0.
1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于( )
A.{x|x≥3} B.{x|x≥2}
C.{x|2≤x<3} D.{x|x≥4}
【解析】 B={x|x≥3}.画数轴(如下图所示)可知选
B.
【答案】 B
2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=( )
A.{3,5} B.{3,6}
C.{3,7} D.{3,9}
【解析】 A={1,3,5,7,9},B={0,3,6,9,12},A和B中有相同的元素3,9,∴A∩B={3,9}.故选D.
【答案】 D高一集合练习题及答案
3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.
【解析】
设两项都参加的有x人,则只参加甲项的有(30-x)人,只参加乙项的有(25-x)人.(30-x)+x+(25-x)=50,∴x=5.
∴只参加甲项的有25人,只参加乙项的有20人,
∴仅参加一项的有45人.
【答案】 45
4.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值.
【解析】 ∵A∩B={9},
∴9∈A,∴2a-1=9或a2=9,∴a=5或a=±3.
当a=5时,A={-4,9,25},B={0,-4,9}.
此时A∩B={-4,9}≠{9}.故a=5舍去.
当a=3时,B={-2,-2,9},不符合要求,舍去.
经检验可知a=-3符合题意.
高一数学练习题2
1.以下元素的全体不能 够构成集合的是( )
A. 中国古代四大发明 B. 地球上的小河流
C. 方程 的实数解 D. 周长为10cm的三角形
2.给出下列关系:① ; ② ;③④ . 其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
3.有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为 或{3,2,1};(3)方程的'所有解的集合可表示为{1,1,2};(4)集合是有限集. 其中正确的说法是( )
A. 只有(1)和(4) B. 只有(2) 和(3)
C. 只有(2) D. 以上四种说法都不对
4.下列所给关系正确的个数是().
① ②3 ③0 ④|-4|N*.
A.1 B.2 C.3 D.4
5.下面有四个语句:
①集合N*中最小的数是0;②-aN,则a③aN,bN,则a+b的最小值是2;④x2+1=2x的解集中含有2个元素.
其中正确语句的个数是().
A.0 B.1 C.2 D.3
高一数学练习题3
1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是()
A.{x|x是小于18的正奇数}
B.{x|x=4k+1,kZ,且k5}
C.{x|x=4t-3,tN,且t5}
D.{x|x=4s-3,sN*,且s5}
解析:选D.A中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B中k取负数,多了若干元素;C中t=0时多了-3这个元素,只有D是正确的.
2.集合P={x|x=2k,kZ},M={x|x=2k+1,kZ},S={x|x=4k+1,kZ},aP,bM,设c=a+b,则有()
A.cP
B.cM
C.cS
D.以上都不对
解析:选B.∵aP,bM,c=a+b,
设a=2k1,k1Z,b=2k2+1,k2Z,
c=2k1+2k2+1=2(k1+k2)+1,
又k1+k2Z,cM.
3.定义集合运算:A*B={z|z=xy,xA,yB},设A={1,2},B={0,2},则集合A*B的所有元素之和为()
A.0
B.2
C.3
D.6
解析:选D.∵z=xy,xA,yB,
z的取值有:10=0,12=2,20=0,22=4,
故A*B={0,2,4},
集合A*B的所有元素之和为:0+2+4=6.
4.已知集合A={1,2,3},B={1,2},C={(x,y)|xA,yB},则用列举法表示集合C=____________.
解析:∵C={(x,y)|xA,yB},
满足条件的点为:
(1,1),(1,2),(2,1),(2,2),(3,1),(3,2).
答案:{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}
1.集合{(x,y)|y=2x-1}表示()
A.方程y=2x-1
B.点(x,y)
C.平面直角坐标系中的所有点组成的集合
D.函数y=2x-1图象上的所有点组成的集合
答案:D
2.设集合M={xR|x33},a=26,则()
A.aM
B.aM
C.{a}M
D.{a|a=26}M
解析:选B.(26)2-(33)2=24-270,
故2633.所以aM.
3.方程组x+y=1x-y=9的解集是()
A.(-5,4)
B.(5,-4)
C.{(-5,4)}
D.{(5,-4)}
解析:选D.由x+y=1x-y=9,得x=5y=-4,该方程组有一组解(5,-4),解集为{(5,-4)}.
4.下列命题正确的有()
(1)很小的实数可以构成集合;
(2)集合{y|y=x2-1}与集合{(x,y)|y=x2-1}是同一个集合;
(3)1,32,64,|-12|,0.5这些数组成的集合有5个元素;
(4)集合{(x,y)|xy0,x,yR}是指第二和第四象限内的点集.
A.0个
B.1个
C.2个
D.3个
解析:选A.(1)错的原因是元素不确定;(2)前者是数集,而后者是点集,种类不同;(3)32=64,|-12|=0.5,有重复的元素,应该是3个元素;(4)本集合还包括坐标轴.
5.下列集合中,不同于另外三个集合的是()
A.{0}
B.{y|y2=0}
C.{x|x=0}
D.{x=0}
解析:选D.A是列举法,C是描述法,对于B要注意集合的代表元素是y,故与A,C相同,而D表示该集合含有一个元素,即x=0.
6.设P={1,2,3,4},Q={4,5,6,7,8},定义P*Q={(a,b)|aP,bQ,ab},则P*Q中元素的个数为()
A.4
B.5
C.19
D.20
解析:选C.易得P*Q中元素的个数为45-1=19.故选C项.
7.由实数x,-x,x2,-3x3所组成的集合里面元素最多有________个.
解析:x2=|x|,而-3x3=-x,故集合里面元素最多有2个.
答案:2
8.已知集合A=xN|4x-3Z,试用列举法表示集合A=________.
解析:要使4x-3Z,必须x-3是4的约数.而4的'约数有-4,-2,-1,1,2,4六个,则x=-1,1,2,4,5,7,要注意到元素x应为自然数,故A={1,2,4,5,7}
答案:{1,2,4,5,7}
9.集合{x|x2-2x+m=0}含有两个元素,则实数m满足的条件为________.
解析:该集合是关于x的一元二次方程的解集,则=4-4m0,所以m1.
答案:m1
10.用适当的方法表示下列集合:
(1)所有被3整除的整数;
(2)图中阴影部分点(含边界)的坐标的集合(不含虚线);
(3)满足方程x=|x|,xZ的所有x的值构成的集合B.
解:(1){x|x=3n,n
(2){(x,y)|-12,-121,且xy
(3)B={x|x=|x|,xZ}.
11.已知集合A={xR|ax2+2x+1=0},其中aR.若1是集合A中的一个元素,请用列举法表示集合A.
解:∵1是集合A中的一个元素,
1是关于x的方程ax2+2x+1=0的一个根,
a12+21+1=0,即a=-3.
方程即为-3x2+2x+1=0,
解这个方程,得x1=1,x2=-13,
集合A=-13,1.
12.已知集合A={x|ax2-3x+2=0},若A中元素至多只有一个,求实数a的取值范围.
解:①a=0时,原方程为-3x+2=0,x=23,符合题意.
②a0时,方程ax2-3x+2=0为一元二次方程.
由=9-8a0,得a98.
当a98时,方程ax2-3x+2=0无实数根或有两个相等的实数根.
综合①②,知a=0或a98.
【高一数学练习题】相关文章:
高一数学集合练习题及答案(通用5篇)07-03
高一英语练习题及答案07-24
精选小升初数学练习题10-29
数学小数除法练习题10-17
小升初数学综合练习题05-20
小升初数学专项填空练习题06-07
数学因式分解练习题05-29
gmat数学机经练习题10-31
备考GMAT考试数学练习题08-28
数学分数除法综合练习题07-20