八年级下册数学第一章测试题及答案
八年级即将升入初三,对于学习要记好公式,认真对待!以下是小编收集整理了八年级下册数学第一章测试题及答案,供大家参考借鉴,希望可以帮助到有需要的朋友。
1.已知:两直线平行,内错角相等;已知:两直线平行,同位角相等;等量代换。
2.证明:
∵AD//CB,
∴∠ACD=∠CAD.
∵CB=AD,CA=AC,
∴△ABC≌△CDA(SAS).
3.证明:
(1)∵AB=AC,
∴∠ABC=∠ACB.
∵∠ABD=∠ACE,
∴∠ABC-∠ABD=∠ACB-∠ACE,
∴∠DBC=∠ECB,即∠OBC=∠OCB.
∴OB=OC(等角对等边).
(2)在△ABD和△ACE中,
∴△ABD≌△ACE(ASA),
∴AD=AE.
∵AB=AC,
∴AB-AE=AC-AD,即BE=CD.
4.证明:
∵BD,CE为△ABC的.高,且BD=CE,又BC=BC,
∴Rt△BCD≌Rt△CBE(HL),
∴∠ABC=∠ACB.
∴AB=AC,即△ABC是等腰三角形.
5.解:在Rt△ABC中,
∵∠BAC=90°,AB=AC=a,
∴BC=√2a.
∵AD⊥BC,
∴BD=1/2BC=√2/2a.
∵AD⊥BC,∠B=45°,
∴AD=BD=√2/2a.
6.解:①Rt△AOD≌Rt△AOE .
证明:
∵高BD,CE交于点O,
∴∠ADO=∠AEO=90°.
∵OD=OE,AO=AO,
∴Rt△AOD≌Rt△AOE(HL).
②Rt△BOE≌Rt△COD.
证明:
由①知∠BEO=∠CDO=90°,
又∵OE=OD且∠BOE=∠COD,
∴△BOE≌△COD(ASA).
③Rt△BCE≌Rt△CBD.
证明:
由②知∠BEC=∠CDB=90°,BE=CD且BC=CB,
∴Rt△BCE≌Rt△CBD(HL).
④△ABM≌△ACM.
证明:
由③知∠ABC=∠ACB,由①知∠BAM=∠CAM,又
∵AM=AM,
∴△ABM≌△ACM(AAS).
⑤Rt△ABD≌Rt△ACE.
证明:
∵∠ADB=∠AEC=90°,∠BAD=∠CAE,又由①知AE=AD,
∴△ABD≌Rt△ACE(ASA).
⑥△BOM≌△COM.
证明:由①知∠AOE=∠AOD,由②知∠BOE=∠COD,
∴∠AOE+∠BOE=∠AOD+∠COD,即∠AOB=∠AOC,
∴∠BOM=∠COM.
由③知∠BOC=∠OCB,
又∵OM=OM.
∴△BOM≌△COM(AAS).
7.已知:在△ABC中,AB=AC,求证:∠B与∠C都是锐角。
证明:∵AB=AC,∴∠B=∠C.假设∠B与∠C都为直角或钝角,于是∠B+∠C≥180°,这与三角形内角和定理矛盾,因此∠B和∠C必为锐角.即等腰三角形的底角必为锐角.
8.解:△AFD是直角三角形.理由如下:
∵AB=AD,
∴∠B=∠ADB=64°,
∴△BAD=180°-∠ADB-∠B=180°-64°-64°=52°。
∵∠BAC=72°,
而∠BAC=∠BAD+∠DAC,
∴∠DAC=∠BAC-∠BAD=72°-52°=20°.
∵AD=DE, ∠E=55°,
∴DAE=∠E=55°(等边对等角).
∵∠DAE=∠DAC+∠FAE,
∴∠FAE=∠DAE-∠DAC=55°-20°=35°。
∵∠AFD=∠FAE+∠E,
∴∠AFD=35°+55°=90°,
∴△AFD是直角三角形。
【八年级下册数学第一章测试题及答案】相关文章:
精选数学初中测试题及答案03-07
小学数学期中测试题及答案07-30
数学测试题以及答案09-30
Photoshop测试题及答案01-25
2018年高考数学复习模拟测试题及答案06-18
photoshop备考测试题及答案10-02
安全培训考试测试题及答案03-16
小升初语文试卷测试题及答案09-12