数学试题

八年级数学下册《函数的图象》练习

时间:2023-08-16 15:35:54 秀雯 数学试题 我要投稿
  • 相关推荐

2023八年级数学下册《函数的图象》练习

  在学习、工作中,我们都离不开练习题,做习题在我们的学习中占有非常重要的位置,对掌握知识、培养能力和检验学习的效果都是非常必要的,大家知道什么样的习题才是规范的吗?下面是小编整理的2023八年级数学下册《函数的图象》练习,欢迎阅读,希望大家能够喜欢。

2023八年级数学下册《函数的图象》练习

  八年级数学下册《函数的图象》练习

  一、选择——基础知识运用

  1.下面说法中正确的是(  )

  A. 两个变量间的关系只能用关系式表示

  B. 图象不能直观的表示两个变量间的数量关系

  C.借助表格可以表示出因变量随自变量的变化情况

  D. 以上说法都不对

  2.赵先生手中有一张记录他从出生到24岁期间的身高情况表(见如表):

  年龄x/岁 0 3 6 9 12 15 18 21 24

  身高h/cm 48 100 130 140 150 158 165 170 170.4

  下列说法错误的是(  )

  A.赵先生的身高增长速度总体上先快后慢

  B.赵先生的身高在21岁以后基本不长了

  C.赵先生的身高从0岁到24岁平均每年增高7.1cm

  D.赵先生的身高从0岁到24岁平均每年增高5.1cm

  3.如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是(  )

  A. B.

  C. D.

  4.2013年8月16日,广东省遭受台风“尤特”袭击,大部分地区发生强降雨,某河受暴雨袭击,一天的水位记录如表,观察表中数据,水位上升最快的时段是(  )

  时间/时 0 4 8 12 16 20 24

  水位/米 2 2.5 3 4 5 6 8

  A.8~12时 B.12~16时 C.16~20时 D.20~24时

  5.星期天,小明和小兵租用一艘皮划艇去嘉陵江游玩,他们先从上游顺流划行1小时,再停留0.5小时采集植物标本,然后加速划行0.5小时到下游,最后乘坐公交车1小时回到出发地,那么小明和小兵距离出发点的距离y随时间x变化的大致图象是(  )

  A. B.

  C. D.

  二、解答——知识提高运用

  6.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所用水为 方。

  月用水量 不超过12方部分 超过12方不超过18方部分 超过18方部分

  收费标准(元/方) 2 2.5 3

  7.小华粉刷他的卧室共花去10小时,他记录的完成工作量的百分数如下:

  时间(小时) 1 2 3 4 5 6 7 8 9 10

  完成的百分数 5 25 35 50 50 65 70 80 95 100

  (1)5小时他完成工作量的百分数是 ;

  (2)小华在 时间里工作量最大;

  (3)如果小华在早晨8时开始工作,则他在 时间没有工作。

  8.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的平面直角坐标系中,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的函数图象.

  9.一辆小汽车在高速公路上从静止到起动10秒内的速度经测量如下表:

  时间(秒) 0 1 2 3 4 5 6 7 8 9 10

  速度(米/秒) 0 0.3 1.3 2.8 4.9 7.6 11.0 14.1 18.4 24.2 28.9

  (1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

  (2)如果用T表示时间,V表示速度,那么随着T的变化,V的变化趋势是什么?

  (3)当T每增加1秒,V的变化情况相同吗?在哪1秒钟,V的增加最大?

  (4)若高速公路上小汽车行驶速度的上限为120千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限。

  10.如图所示,用长为20的铁丝焊接成一个长方形,设长方形的一边为x,面积为y,随着x的变化,y的值也随之变化。

  (1)写出y与x之间的关系式,并指出在这个变化中,哪个是自变量?哪个是因变量?

  (2)用表格表示当x从1变化到9时(每次增加1),y的相应值;

  x 1 2 3 4 5 6 7 8 9

  y

  (3)当x为何值时,y的值最大?

  参考答案

  一、选择——基础知识运用

  1.【答案】C

  【解析】A、两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误;

  B、图象能直观的表示两个变量间的数量关系,故错误;

  C、借助表格可以表示出因变量随自变量的变化情况,正确;

  D、以上说法都不对,错误;

  故选C。

  2.【答案】C

  【解析】A、从0-18增长较快,18-24增长变慢,所以高增长速度总体上先快后慢是正确的;

  B、从21岁步入成年,身高在21岁以后基本不长了是正确的;

  C、(170.4-48)÷24=5.1cm,从0岁到24岁平均每年增高7.1cm是错误的;

  D、(170.4-48)÷24=5.1cm,从0岁到24岁平均每年增高5.1cm是正确的。

  故选:C。

  3.【答案】C

  【解析】由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、B;

  由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除D选项;

  故选C。

  4.【答案】D

  【解析】由表可以看出:在相等的时间间隔内,20时至24时水位上升最快.

  故选D。

  5.【答案】A

  【解析】∵先从上游顺流划行1小时,

  ∴第一段函数图象结束点的横坐标为1,

  故排除D;

  ∵停留0.5小时采集植物标本,

  ∴此段图象平行于x轴,

  故排除C;

  ∵加速划行0.5小时到下游,

  ∴这段函数图象的斜率比第一段的斜率大(即倾斜度大),

  故排除B。

  故选A。

  二、解答——知识提高运用

  6.【答案】20

  【解析】∵45>12×2+6×2.5=39,

  ∴用户5月份交水费45元可知5月用水超过了18方,

  设用水x方,水费为y元,则关系式为y=39+3(x-18).

  当y=45时,x=20,

  即用水20方。

  7.【答案】(1)5小时他完成工作量的百分数是50%;

  (2)由图表可知,在第二小时完成的百分数最大是20%,所以,在第二小时时间里工作量最大;

  (3)开始工作4~5小时工作量都是50%没有发生变化,

  ∵早晨8时开始工作,

  ∴在12~13小时时间没有工作.

  故答案为:50%;第二小时;12~13小时。

  8.【答案】2.5个小时走完全程50千米,所以1.5小时走了30千米,休息0.5小时后1小时走了20千米,由此作图即可。

  9.【答案】(1)上表反映了时间与速度之间的关系,时间是自变量,速度是因变量;

  (2)如果用T表示时间,V表示速度,那么随着T的变化,V的变化趋势是V随着T的增大而增大;

  (3)当T每增加1秒,V的变化情况不相同,在第9秒时,V的增加最大;

  (4) ≈33.3(米/秒),

  由33.3-28.9=4.4,且28.9-24.2=4.7>4.4,

  所以估计大约还需1秒。

  10.【答案】(1)y=(20÷2-x)×x=(10-x)×x=10x-x2;

  x是自变量,y是因变量.

  (2)所填数值依次为:9,16,21,24,25,24,21,16,9;

  (3)由(2)可以看出:当x为5时,y的值最大。

  八年级数学下册《函数的图象》知识点

  反比例函数y=k/x的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限。

  它们关于原点对称、反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。

  画反比例函数的图象时要注意的问题:

  (1)画反比例函数图象的方法是描点法;

  (2)画反比例函数图象要注意自变量的取值范围是k≠0,因此不能把两个分支连接起来。

  k≠0

  (3)由于在反比例函数中,x和y的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x轴和y轴的变化趋势。

  反比例函数的性质:

  y=k/x(k≠0)的变形形式为xy=k(常数)所以:

  (1)其图象的位置是:

  当k﹥0时,x、y同号,图象在第一、三象限;

  当k﹤0时,x、y异号,图象在第二、四象限。

  (2)若点(m,n)在反比例函数y=k/x(k≠0)的图象上,则点(—m,—n)也在此图象上,故反比例函数的图象关于原点对称。

  (3)当k﹥0时,在每个象限内,y随x的增大而减小;

  当k﹤0时,在每个象限内,y随x的增大而增大;

【八年级数学下册《函数的图象》练习】相关文章:

一次函数的图象教案11-23

高一数学函数练习题07-29

八年级数学下册勾股定理专项练习题03-16

函数数学教案11-26

八年级上册数学练习题04-04

四年级数学下册《练习三》教案03-07

七年级下册数学试题练习03-14

七年级下册数学练习题04-02

小学五年级下册数学练习题01-25

六年级数学下册精选练习题03-08