数学试题

八年级数学下册4月月考检测题

时间:2024-09-07 23:48:11 数学试题 我要投稿
  • 相关推荐

八年级数学下册4月月考检测题

  数学是一种精神,一种理性的精神。正是这种精神,激发、促进、鼓舞并驱使人类的思维得以运用到最完善的程度。应届毕业生考试网小编为大家编辑整理了八年级数学下册4月月考检测题,希望对大家有所帮助。

八年级数学下册4月月考检测题

  一、选择题(每小题3分,共30分)

  1.下列关于 的方程:① ;② ;③ ;

  ④( ) ;⑤ = -1,其中一元二次方程的个数是( )

  A.1 B.2 C.3 D.4

  2.用配方法解一元二次方程x2-4x=5时,此方程可变形为( )

  A.(x+2)2=1 B.(x-2)2=1

  C.(x+2)2=9 D.(x-2)2=9

  3.若 为方程 的解,则 的值为( )

  A.12 B.6 C.9 D.16

  4.若 则 的值为( )

  A.0 B.-6 C.6 D.以上都不对

  5.目前我国已建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是( )

  A.438 =389 B.389 =438

  C.389(1+2x)=438 D.438(1+2x)=389

  6.根据下列表格对应值:

  3.24 3.25 3.26

  -0.02 0.01 0.03

  判断关于 的方程 的一个解 的范围是( )

  A. <3.24 B.3.24< <3.25

  C.3.25< <3.26 D.3.25< <3.28

  7.已知 分别是三角形的三边长,则一元二次方程 的根的情况是( )

  A.没有实数根 B.可能有且只有一个实数根

  C.有两个相等的实数根 D.有两个不相等的实数根

  8.已知 是一元二次方程 的两个根,则 的值为( )

  A. B.2 C. D.

  9. 关于x的方程 的根的情况描述正确的是( )

  A . k 为任何实数,方程都没有实数根

  B . k 为任何实数,方程都有两个不相等的实数根

  C . k 为任何实数,方程都有两个相等的实数根

  D.根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种

  10.某城市为了申办冬运会,决定改善城市容貌,绿化环境,计划用两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增 长率是( )

  A.19% B.20% C.21% D.22%

  二、填空题(每小题3分,共24分)

  11.对于实数a,b,定义运算“*”: 例如:4*2,因为4>2,所以4*2=42-4× 2=8.若x1,x2是一元二次方程x2-5x+6=0的两个根,则x1*x2= .

  12.若x1=-1是关于x的方程x2+mx-5=0的一个根,则此方程的另一个根x2= .

  13.若( 是 关于 的一元二次方程,则 的值是________.

  14.若关于x的方程x2-2x-m=0有两个相等的实数根,则m的值是 .

  15.如果关于x的一元二次方程x2-6x+c=0(c是常数)没有实 数根,那么c的取值范围是 .

  16.设m、n是一元二次方程x2+3x-7=0的两个根,则m2+4m+n= .

  17.若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程 .

  18. 一个两位数等于它的个位数字的平方,且个位数字比十位数字大3,则这个两位数为 .

  三、解答题(共46分)

  19.(6分)已知关于 的方程 .

  (1) 为何值时,此方程是一元一次方程?

  (2) 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.

  20.(8分)选择适当方法解下列方程:

  (1) (用配方法);(2) ;

  (3) ;(4) .

  21.(6分)在长为 ,宽为 的矩形的四个角上分别截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.

  22.(6分)某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取 适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?

  23.(8分)关于 的方程 有两个不相等的实数根.

  (1)求 的取值范围.

  (2)是否存在实数 ,使方程的两个实数根的倒数和等于0?若存在,求出 的值;若不存在,说明理由.

  24.(6分)已知下列n(n为正整数)个关于x的一元二次方程:

  (1)请解上述一元二次方程;

  (2)请你指出这n个方程的根具有什么共同特点,写出一条即可

  25.(8 分)某市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产 开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.

  (1)求平均每次下调的百分率.

  (2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?

  参考答案

  1.B 解析:方程①是否为一元二次方程与 的取值有关;

  方程②经过整理后可得 , 是一元二次方程;

  方程③是分式方程;

  方程④的二次项系数经过配方后可化为 ,不论 取何值,其值都不为0,所以方程④是一元二次方程;

  方程⑤不是整式方程,也可排除.

  故一元二次方程仅有2个.

  2. D 解析:由x24x5得x24x+225+22,即(x2)2=9.

  3. B 解析:因为 为方程 的解,所以 ,所以 , 从而 .

  4.B 解析:∵ ,∴ .

  ∵ ∴ 且 ,∴ , ,∴ ,故选B.

  5.B 解析:由每半年发放的资助金额的平均增长率为x,

  得去年下半年发放给每个经济困难学生389(1+x)元,

  今年上半年发放给每个经济困难学生389(1+x)(1+x)389 (元),

  根据关键语句“今年上半年发放了438元”,可得方程389 438.

  点拨:关于增长率问题一般列方程a(1+x)n=b,其中a为基础数据,b为增长后的数据,n为增长次数,x为增长率.

  6.B 解析:当3.24< <3.25时, 的值由负连续变化到正,说明在3.24<

  <3.25范围内一定有一个 的值,使 ,即是方程 的一

  个解.故选B.

  7.A 解析:因为

  又因为 分别是三角形的三边长,所以

  所以 所以方程没有实数根.

  8. D 解析:因为 是一元 二次方程 的两个根,则 ,所以 ,故选D.

  9. B 解析:根据方程的判别式,得

  ∵ ∴ 故选B.

  10. B 解析:设这两年平均每年绿地面积的增长率是x,则根据题意,得 ,解得 ,

  11. 3或3 解析:解方程x25x+60,得x2或x3.

  当x13,x22时,x1*x23*2323×23;

  当x12,x23时,x1*x22*32×3323.

  综上x1*x23或3.

  12. 5 解析:由根与系数的关系,得x1x2-5,∵ x1=-1, ∴ x25.

  点拨:一元二次方程ax2+bx+c0(a≠0)的根与系数的关系是x1+x2  ,x1•x2 .

  13. 解析:由题意得 解得 或 .

  14. 1 解析:根据题意得(2)24×(m)0.解得m1.

  15. c9 解析:由(6)24×1×c0,得c9.

  16.4 解析: ∵ m,n是一元二次方程x2+3x70的两个根,

  ∴ m+n3,m2+3m7=0,∴ m2+4m+n m2+3m+m+n  7+m+n734.

  17. x2-5x+6=0(答案不唯一) 解析:设Rt△ABC的两条直角边的长分别为a,b.因为 S△ABC=3,所以ab=6.又因为一元二次方程的两根为a,b(a>0,b>0),所以符合条件的一元二次方程为(x-2)(x-3)= 0,(x-1)(x-6)=0等,即x2-5x+6=0或x2-7x+6=0等.

  18. 25或36 解析:设这个两位数的十位数字为 ,则个位数字为( ).

  依题意得 ,解得 ,∴ 这个两位数为25或36.

  19. 分析:本题是含有字母系数的方程问题.根据一元一次方程和一元二次方程的定义,分别进行讨论求解.

  解:(1)由题意得

  即当 时,方程 是一元一次方程.

  (2)由题意得当 ,即 时,方程 是一元二次方程.

  此方程的二次项系数是 、一次项系数是 、常数项是 .

  20. 解:(1) ,

  配方,得

  解得 , .

  (2) ,

  分解因式,得 解得

  (3)因为 ,所以

  即 , .

  (4)移项得 ,

  分解因式得 ,

  解得 .

  21.解:设小正方形的边长为 .

  由题意得

  解得

  答:截去的小正方形的边长为 .

  22.分析:总利润每件平均利润×总件数.设每张贺年卡应降价 元,则每件平均利润应是(0.3 )元,总件数应是(500+ ×100).

  解:设每张贺年卡应降价 元.

  则根据题意得(0.3 ) 120,

  整理,得 ,

  解得 (不合题意,舍去).∴ .

  答:每张贺年卡应降价0.1元.

  23. 解:(1)由 ( +2)2-4 • >0,解得 >-1.

  又∵ ,∴ 的取值范围是 >-1,且 .

  (2)不存在符合条件的实数 .

  理由如下:设方程 2+( +2) + 0的两根分别为 , ,

  则由根与系数的关系,得 , .

  又 , 则 0,∴ .

  由(1)知, 且 ,所以当 时, ,方程无实数根.

  ∴ 不存在符合条件的实数 .

  24.解:(1) ,

  所以 .

  ,

  所以 .

  ,

  所以 ,

  .……

  ,

  所以 .

  (2)答案不唯一,只要正确即可.如:共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等.

  25.解:(1)设平均每次下调的百分率为 ,则 ,

  解得 (舍去).

  ∴ 平均每次下调的百分率为10%.

  (2)方案①可优惠: (元 ),

  方案②可优惠: (元),

  ∴ 方案①更优惠.

【八年级数学下册4月月考检测题】相关文章:

最新一年级数学下册4月月考检测题09-29

八年级语文下册第一单元检测题10-01

二年级数学下册期末检测题08-17

最新八年级英语下册第六单元检测题06-02

八年级英语下册Unit9单元检测题06-11

八年级英语下册unit3检测题及答案08-14

八年级英语下册Unit8单元检测题07-09

语文下册期中试题质量检测题08-25

2024小学数学六年级下册综合检测题04-15

2017八年级英语下册Unit9单元检测题07-26