2017年初二数学期中考试试卷
学习数学是为了探索宇宙的奥秘。如所知,星球与地层、热与电、变异与存在的规律,无不涉及数学真理。接下来我们一起练习初二数学期中考试试卷。
一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里。每小题3分,共36分
1.计算 的结果是( )
A.﹣3 B.3 C.﹣9 D.9
2.要使二次根式 有意义,则x的取值范围是( )
A.x>0 B.x≤2 C.x≥2 D.x≥﹣2
3.在三边长分别为下列长度的三角形中,不是直角三角形的是( )
A.5,13,12 B.2,3, C.1, , D.4,7,5
4.在(﹣2)0、 、0、﹣ 、 、 、0.101001…(相邻两个1之间0的个数逐次加1)中,无理数的个数是( )
A.2 B.3 C.4 D.5
5.设边长为3的正方形的对角线长为a,下列关于a的四种说法:
①a是无理数;
②a可以用数轴上的一个点来表示;
③3
④a是18的算术平方根.
其中,正确说法有( )个.
A.4 B.3 C.2 D.1
6.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是( )
A.13 B.26 C.47 D.94
7.以下描述中,能确定具体位置的是( )
A.万达电影院2排 B.距薛城高铁站2千米
C.北偏东30℃ D.东经106℃,北纬31℃
8.小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )
A.2m B.2.5m C.2.25m D.3m
9.对于一次函数y=﹣2x+4,下列结论正确的是( )
A.函数值随自变量的增大而增大
B.函数的图象经过第三象限
C.函数的图象向下平移4个单位长度得y=﹣2x的图象
D.函数的图象与x轴的交点坐标是(0,4)
10.已知点M(3,2)与点N(a,b)在同一条平行于x轴的直线上,且点N到y轴的距离为4,那么点N的坐标是( )
A.(4,﹣2)或(﹣5,2) B.(4,﹣2)或(﹣4,﹣2) C.(4,2)或(﹣4,2) D.(4,2)或(﹣1,2)
11.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(﹣10,20)表示的位置是( )
A.点A B.点B C.点C D.点D
12.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是( )
A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+3
二、填空题,每小题4分,共24分
13.若a<
14.计算:( + )2﹣ =__________.
15.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是__________.
16.若直角三角形的两边长为a、b,且 +|b﹣8|=0,则该直角三角形的斜边长为__________.
17.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为__________cm.(结果保留π)
18.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:
(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);
(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)
按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=__________.
三、解答题(共7道题,共60分)
19.计算:
(1)( )× ﹣2 ;
(2)(3 ﹣4 )÷ .
20.先化简,再求值:(a+2)(a﹣2)+4(a+1)﹣4a,其中a= ﹣1.
21.如图,一架长2.5米的梯子,斜靠在竖直的墙上,这时梯子底端离墙0.7米,为了安装壁灯,梯子顶端离地面2米,请你计算一下,此时梯子底端应再向远离墙的方向拉多远?
22.如图,方格纸中每个小正方形的边长都是1,△ABC的三个顶点都在格点上,如果用(﹣2,﹣1)表示C点的位置,用(1,0)表示B点的位置,那么:
(1)画出直角坐标系;
(2)画出与△ABC关于y轴对称的图形△DEF;
(3)分别写出点D、E、F的坐标.
23.已知一次函数y=kx﹣3,当 x=2时,y=3.
(1)求一次函数的表达式;
(2)若点(a,2)在该函数的图象上,求a的值;
(3)将该函数的图象向上平移7个单位,求平移后的图象与坐标轴的交点坐标.
24.勾股定理神秘而每秒,它的证法多样,其巧妙各有不同,其中的”面积法“给小聪明以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:
将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2
证明:连接DB,过点D作BC边上的高DF,
则DF=EC=b﹣A.
∵S四边形ADCB=S△ACD+S△ABC= b2+ ab.
又∵S四边形ADCB=S△ADB+S△DCB= c2+ a(b﹣a)
∴ b2+ ab= c2+ a(b﹣a)
∴a2+b2=c2
请参照上述证法,利用图2完成下面的证明:
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.
求证:a2+b2=c2.
证明:连结__________
∵S多边形ACBED=__________
又∵S多边形ACBED=__________
∴__________
∴a2+b2=c2.
【初二数学期中考试试卷】相关文章:
初二数学期中考试试卷分析08-25
初二数学期中考试试卷201708-26
初二语文期中考试试卷08-19
初二上册数学期中考试卷及答案09-06
初二语文期中考试试卷及答案06-03
初二语文期中考试卷及答案08-15
初二语文期中考试试卷及答案10-29
初二数学上册期中试卷及答案04-23
2023初二上册期中数学试卷10-01