期中考试

初二期中数学上册检测卷

时间:2024-06-27 14:32:41 期中考试 我要投稿
  • 相关推荐

2017初二期中数学上册检测卷

  尽可能多的做练习题可以帮助同学对所学知识点加以巩固,经过试题的练习相信大家一定会学到更多,以下是小编为大家搜索整理的2017初二期中数学上册检测卷,希望能给大家带来帮助!更多精彩内容请持续关注我们应届毕业生考试网!

2017初二期中数学上册检测卷

  一、选择题(每小题2分,共12分)

  1.下列式子中,属于最简二次根式的是( )

  A. B. C. D.

  2. 如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,

  连接BM、DN.若四边形MBND是菱形,则 等于( )

  A. B. C. D.

  3.若代数式 有意义,则实数 的取值范围是( )

  A. ≠ 1B. ≥0C. >0D. ≥0且 ≠1

  4. 如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,

  ∠EFB=60°,则矩形ABCD的面积是 ( )

  A.12 B. 24 C. D.

  5. 如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5 º,

  EF⊥AB,垂足为F,则EF的长为( )

  A.1 B.2 C.4-22 D.32-4

  6.在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是( )

  A.1:2:3:4 B.1:2:2:1 C.1:2:1:2 D.1:1:2:2

  二、填空题:(每小题3分,共24分)

  7.计算: = .

  8.若 在实数范围内有意义,则 的取值范围是 .

  9.若实数 、 满足 ,则 = .

  10.如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数书为 .

  11.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为 .

  12.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ____________,使ABCD成为菱形.(只需添加一个即可)

  13 .如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边长为2cm,∠A=120°,则EF= .

  14.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_________.

  三、解答题(每小题5分,共20分)

  15.计算:

  16. 如图8,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.

  17.先化简,后计算: ,其中 , .

  18. 如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.

  求证:OE=OF.

  四、解答题(每小题7分,共28分)

  19. 在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.

  (1)求证:四边形BFDE为平行四边形;

  (2)若四边形BFDE为菱形,且AB=2,求BC的长.

  20. 如图,在四边形ABCD中,AB=BC,对角线BD平分 ABC,P是BD上一点,过点P作PMAD,PNCD,垂 足分别为M、N。

  (1) 求证:ADB=CDB;

  (2) 若ADC=90,求证:四边形MPND是正方形。

  21.如图,在□ABCD中,F是AD的中点,延长BC到点E,使CE= BC,连结DE,CF。

  (1)求证:四边形CEDF是平行四边形;

  (2)若AB=4,AD=6,∠B=60°,求DE的长。

  22.如图,四边形ABCD是平行四边形,DE平分∠ADC交AB于点E,BF平分∠ABC,交CD于点F.

  (1)求证:DE=BF;

  (2)连接EF,写出图中所有的全等三角形.(不要求证明)

  五、解答题(每小题8分,共16分)

  23. 如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.

  (1)求证:DE=EF

  (2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.

  24. 2013如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC。

  (1)求证;OE=OF;

  (2)若BC= ,求AB的长。

  六解答题:(每小题10分,共20分)

  25. 如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.

  (1)求证:四边形ABCE是平行四边形;

  (2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.

  26. 如图,在等边三角形ABC中,BC=6cm. 射线AG//BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).

  (1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;

  (2)填空:

  ①当t为_________s时,四边形ACFE是菱形;

  ②当t为_________s时,以A、F、C、E为顶点的四边形是直角梯形.

  参考答案

  1.B;2.C;3.D;4.D;5.C;6.C;7.-7;8. ≤ ;9. ;10.25°;11. (8052,0);12. OA=OC或AD=BC或AD∥BC或AB=BC;13. ;14. 或3;

  15. ;

  16. 解:∵四边形ABCD是菱形,对角线AC与BD相交于O,

  ∴AC⊥BD,DO=BO,

  ∵AB=5,AO=4,

  ∴BO= =3,

  ∴BD=2BO=2×3=6.

  17. :原式

  当 , 时,原式的值为 。

  18. 证明:∵四边形ABCD是平行四边形,

  ∴OA=OC,AB∥CD

  ∴∠OAE=∠OCF

  ∵∠AOE=∠COF

  ∴△OAE≌△OCF(ASA)

  ∴OE=OF

  19. (1)证明:∵四边形ABCD是矩形,

  ∴∠A=∠C=90°,AB=CD,AB∥CD,

  ∴∠ABD=∠CDB,

  ∵在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的'点N处,

  ∴∠ABE=∠EBD= ∠ABD,∠CDF= ∠CDB,

  ∴∠ABE=∠CDF,

  在△ABE和△CDF中

  ∴△ABE≌△CDF(ASA),

  ∴AE=CF,

  ∵四边形ABCD是矩形,

  ∴AD=BC,AD∥BC,

  ∴DE=BF,DE∥BF,

  ∴四边形BFDE为平行四边形;

  (2)解:∵四边形BFDE为为菱形,

  ∴BE=ED,∠EBD=∠FBD=∠ABE,

  ∵四边形ABCD是矩形,

  ∴AD=BC,∠ABC=90°,

  ∴∠ABE=30°,

  ∵∠A=90°,AB=2,

  ∴AE= = ,BE=2AE= ,

  ∴BC=AD=AE+ED=AE+BE= + =2 .

  20. (1) ∵BD平分ABC,∴ABD=CBD。又∵BA=BC,BD=BD,

  ∴△ABD  △CBD。∴ADB=CDB。 (4分)

  (2) ∵PMAD,PNCD,∴PMD=PND=90。

  又∵ADC=90,∴四边形MPND是矩形。

  ∵ADB=CDB,PMAD,PNCD,∴PM=PN。

  ∴四边形MPND是正方形。

  21.(1)略

  (2)

  22. 证明:(1)∵四边形ABCD是平行四边形,

  ∴DC∥AB,

  ∴∠CDE=∠AED,

  ∵DE平分∠ADC,

  ∴∠ADE=∠CDE,

  ∴∠ADE=∠AED,

  ∴AE=AD,

  同理CF=CB,又AD=CB,AB=CD,

  ∴AE=CF,

  ∴DF=BE,

  ∴四边形DEBF是平行四边形,

  ∴DE=BF,

  (2)△ADE≌△CBF,△DFE≌△BEF.

  23.

  解答: 证明:(1)∵DE∥BC,CF∥AB,

  ∴四边形DBCF为平行四边形,

  ∴DF=BC,

  ∵D为边AB的中点,DE∥BC,

  ∴DE= BC,

  ∴EF=DF﹣DE=BC﹣ CB= CB,

  ∴DE=EF;

  (2)∵四边形DBCF为平行四边形,

  ∴DB∥CF,

  ∴∠ADG=∠G,

  ∵∠ACB=90°,D为边AB的中点,

  ∴CD=DB=AD,

  ∴∠B=∠DCB,∠A=∠DCA,

  ∵DG⊥DC,

  ∴∠DCA+∠1=90°,

  ∵∠DCB+∠DCA=90°,

  ∴∠1=∠DCB=∠B,

  ∵∠A+∠ADG=∠1,

  ∴∠A+∠G=∠B.

  24. (1)证明:∵四边形ABCD是矩形 ∴AB∥CD,∠OAE=∠OCF,∠OEA=∠OFC

  ∵AE=CF ∴△AEO≌△CFO(ASA) ∴OE=OF

  (2)连接BO ∵OE=OF,BE=BF ∴BO⊥EF且∠EBO=∠FBO ∴∠BOF=900

  ∵四边形ABCD是矩形 ∴∠BCF=900 又∵∠BEF=2∠BAC,∠BEF=∠BAC+∠EOA

  ∴∠BAC=∠EOA ∴AE=OE ∵AE=CF,OE=OF ∴OF=CF 又∵BF=BF

  ∴△BOF≌△BCF(HL) ∴∠OBF=∠CBF ∴∠CBF=∠FBO=∠OBE

  ∵∠ABC=900 ∴∠OBE=300 ∴∠BEO=600 ∴∠BAC=300

  ∴AC=2BC= ,

  ∴AB=

  25.(1)证明:∵Rt△OAB中,D为OB的中点,

  ∴DO=DA,

  ∴∠DAO=∠DOA=30°,∠EOA=90°,

  ∴∠AEO=60°,

  又∵△OBC为等边三角形,

  ∴∠BCO=∠AEO=60°,

  ∴BC∥AE,

  ∵∠BAO=∠COA=90°,

  ∴CO∥AB,

  ∴四边形ABCE是平行四边形;

  (2)解:设OG=x,由折叠可得:AG=GC=8﹣x,

  在Rt△ABO中,

  ∵∠OAB=90°,∠AOB=30°,BO=8,

  AO= ,

  在Rt△OAG中,OG2+OA2=AG2,

  x2+(4 )2=(8﹣x)2,

  解得:x=1,

  ∴OG=1.

  26.(1) 证明:∵

  ∴

  ∵ 是 边的中点

  ∴

  又∵

  ∴△ADE≌△CDF

  (2)①∵当四边形 是菱形时,∴

  由题意可知: ,∴

  ②若四边形 是直角梯形,此时

  过 作 于M, ,可以得到 ,

  即 ,∴ ,

  此时, 重合,不符合题意,舍去。

  若四边形若四边形 是直角梯形,此时 ,

  ∵△ABC是等边三角形,F是BC中点,

  ∴ ,得到

  经检验,符合题意。

  ∴① ②

【初二期中数学上册检测卷】相关文章:

2023初二英语下册期中检测卷07-01

西师版三年级数学上册期中质量检测卷10-04

小升初数学检测卷与答案201708-13

初二数学上册期中试卷及答案04-23

2023初二上册期中数学试卷10-01

长春版三年级语文上册期中质量检测卷09-24

最新三年级数学下册期中检测卷10-26

小学五年级期中检测卷及答案06-20

2017学年四年级语文上册期中质量检测卷附答案05-15

七年级上册语文检测卷08-14