- 相关推荐
2024-2025八年级上册数学期中试卷练习题
在日常学习和工作中,我们会经常接触并使用试卷,试卷是纸张答题,在纸张有考试组织者检测考试者学习情况而设定在规定时间内完成的试卷。你知道什么样的试卷才算得上好试卷吗?以下是小编收集整理的2024-2025八年级上册数学期中试卷练习题,仅供参考,欢迎大家阅读。
八年级上册数学期中试卷练习题 1
一、选择题(每小题3分,共30分)
1.已知点 关于 轴的对称点为 ,则 的值是( )
A.1 B.-1 C.5 D.-5
2.已知在坐标平面内有一点 ,若 ,那么点 的位置在( )
A.原点 B. 轴上 C. 轴上 D.坐标轴上
3.(2015湖北黄冈中考3分)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地.已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是( )
C. D.
4.已知点P坐标为,且P点到两坐标轴的距离相等,则点P的坐标是( )
A.(3,3) B.(3,-3) C.(6,-6) D.(3,3)或(6,-6)
5.目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开 分钟后,水龙头滴出y毫升的水,则y与 之间的函数关系式是( )
A.y=0.05 B.y=5 C.y=100 D.y=0.05 +100
6.如图所示,坐标平面上有四条直线 1、 2、 3、 4.若这四条直线中,有一条直线为函数3 -5y+15=0的图象,则此直线为( )
A. 1 B. 2 C. 3 D. 4
7.(2015浙江丽水中考)在平面直角坐标系中,过点(-2,3)的直线 经过第一、二、三象限,若点(0, ),(-1, ),( ,-1)都在直线 上,则下列判断正确的是( )
A. B. C. D.
8.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( )
A. B.
C. D.
9.如图所示,用两个相同的三角板按照如图方式作平行线,能解释其中道理的定理是( )
A.同位角相等,两直线平行
B.同旁内角互补,两直线平行
C.内错角相等,两直线平行
D.平行于同一条直线的两直线平行
10.(2015湖北襄阳)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上,如果∠2=60°,那么∠1的度数为( )
A.60° B.50° C.40° D.30°
二、填空题(每小题4分,共16分)
11.若一次函数 与一次函数 的图象的交点坐标为( ,8),则 _________.
12.对于函数 ,根据表格的对应值,则可以判断方程 =0( ≠0, 为常数)的解可能是 .
13.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B= 度.
14. 如图所示,D是△ABC的边BC上的.一点,且∠1=∠2,∠3=∠4,∠BAC=63°,则∠DAC=
三、解答题(共74分)
15.(6分)在图中,确定点 的坐标.请说明点B和点F有什么关系?
16.(8分)已知一次函数,
(1) 为何值时,它的图象经过原点;
(2) 为何值时,它的图象经过点(0,).
17.(8分)如图,在△ABC中,∠B=42o,∠C=72 o,AD是△ABC的角平分线.
(1)∠BAC等于多少度?简要说明理由.
(2)∠ADC等于多少度?简要说明理由.
18.(8分)写出下列命题的逆命题,并判断是真命题,还是假命题.
(1)如果 =0,那么 =0, =0.
(2)如果一个数的平方是9,那么这个数是3.
19.(10分)小明同学骑自行车去郊外春游,图中表示的是他离家的距离y(千米)与所用的时间 (小时)之间关系的函数图象.
(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?
(2)求小明出发两个半小时离家多远?
(3)求小明出发多长时间距家12千米?
20.(10分)如图所示,已知∠1+∠3=180°,∠2+∠3=180°.
求证:AB∥OE∥CD.
21.(12分)某市为了节约用水,规定:每户每月用水量不超过最低限量 m3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过 m3时,除了付同上的基本费和损耗费外,超过部分每1 m3付b元的超额费.
某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:
用水量(m3) 交水费(元)
一月份 9 9
二月份 15 19
三月份 22 33
根据上面表格中的数据,求 .
22.(12分)(1)如图(1)所示,已知在△ABC中,O为∠ABC和∠ACB的平分线BO,CO的交点.试猜想∠BOC和∠A的关系,并说明理由.
(2)如图(2)所示,若O为∠ABC的平分线BO和∠ACE的平分线CO的交点,则∠BOC与∠A的关系又该怎样?为什么?
答案解析:
1.C 解析:因为点 关于 轴的对称点为 ,所以 所以
2.D 解析:∵ ,∴ 或 .当 时,横坐标是0,点在 轴上;当 时,纵坐标是0,点在 轴上.故点 在坐标轴上,选D.
3.C 解析:因为货车和小汽车同时从甲地出发驶向乙地,所以选项D不合题意.因为甲、乙两地相距180千米,货车的速度是每小时60千米,小汽车的速度是每小时90千米,所以小汽车达到乙地用时2小时,货车到达乙地用时3小时,所以小汽车从出发到达乙地再返回甲地共用4小时,因此货车达到乙地时,小汽车还没有返回到甲地,所以选项C正确.
4.D 解析:因为P点到两坐标轴的距离相等,所以,所以当
5.B 解析:y=100×0.05 ,即y=5 .故选B.
6.A 解析:将 =0代入3 -5 +15=0得 =3,
∴ 函数3 -5 +15=0的图象与 轴的交点为(0,3).
将 =0代入3 -5 +15=0得 =-5,
∴ 函数3 -5 +15=0的图象与 轴的交点为(-5,0).
观察图象可得直线 1与 、 轴的交点恰为(-5,0)、(0,3),
∴ 函数3 -5 +15=0的图象为直线 1.故选A.
7.D 解析:设直线 的表达式为 ,
直线 经过一、二、三象限, ,函数值 随 的增大而增大.
, ,故A项错误;
, ,故B项错误;
, ,故C项错误;
, ,故D项正确.
8.C 解析:∵ 三角形为钝角三角形,∴ 最长边上的高是过最长边所对的角的顶点作对边的垂线,垂足在最长边上.故选C.
9.C 解析:如图,∠ABD=∠BAC,故使用的定理为内错角相等,两直线平行.选C.
10.D 解析:如图,根据矩形直尺的对边平行得到∠3=∠2= ,根据三角形的外角性质得到 .
11. 16 解析:将( ,8)分别代入 和 得 两式相加得
12.-1(本题答案不唯一) 解析:∵ 根据题意得当 =-1.05时, =-0.05;当 =-0.97时,
=0.02,∴ 可以判断方程 (为常数)的解介于-1.05和-0.97之间.
13.40 解析:∵ △ABC沿着DE翻折,
∴ ∠1+2∠BED=180°,∠2+2∠BDE=180°,
∴ ∠1+∠2+2(∠BED+∠BDE)=360°,
而∠1+∠2=80°,∠B+∠BED+∠BDE=180°,
∴ 80°+2(180°-∠B)=360°,∴ ∠B=40°.
14.24° 解析:由图和题意可知:∠BAC=180°-∠2-∠3,
∠3=∠4=∠1+∠2,所以63°=180°-∠2-(∠1+∠2).
又因为∠1=∠2,所以63°=180°-3∠2,即∠2=39°,
所以∠1=39°,所以∠DAC=∠BAC-∠1=63°-39°=24°.
15.分析:从图中找到各点对应的横、纵坐标,从而进行求解.
解:各点的坐标为:
,点 和点 关于 轴对称,且关于原点对称.
16. 分析:(1)把点的坐标代入一次函数关系式,并结合一次函数的定义求解即可;
(2)把点的坐标代入一次函数关系式即可.
解:(1)∵ 图象经过原点,
∴ 点(0,0)在函数图象上,代入解析式得,解得 .
又∵ 是一次函数,∴ ,
∴ .故 符合.
(2)∵ 图象经过点(0,),
∴ 点(0, )的坐标满足函数解析式,代入得
17.解:(1)∠BAC=180°-42°-72°=66°(三角形内角和为180°).
(2) ∠ADC=∠B+∠BAD(三角形的一个外角等于和它不相邻的两内角之和).
∵ AD是角平分线,∴ ∠BAD=∠CAD(角平分线定义),
∴ ∠ADC=42°+33°=75°.
18.分析:分别找出各命题的条件和结论将其互换即可.
解:(1)逆命题:如果 =0, =0,那么 + =0,真命题;
(2)逆命题:如果一个数是3,那么这个数的平方是9,真命题.
19.分析:(1)根据分段函数图象上点的坐标的意义可知:小明到达离家最远的地方需3小时,此时,他离家30千米;
(2)因为C(2,15)、D(3,30)在直线上,利用待定系数法求出解析式后,把 =2.5代入解析式即可;
(3)分别利用待定系数法求得过E、F两点所在直线解析式以及过A、B两点所在直线解析式,分别令y=12,求出 .
解:(1)由图象可知小明到达离家最远的地方需3小时.此时,他离家30千米.
(2)设CD的解析式为y=k1 +b1,将C(2,15)、D(3,30),
代入得 解得
∴ =15 -15(2≤ ≤3).
当 =2.5时,y=22.5.
答:出发两个半小时,小明离家22.5千米.
(3)设过E、F两点的直线解析式为y=k2 +b2,
将E(4,30),F(6,0),代入得 解得
∴ =-15 +90.(当
设过A、B两点的直线解析式为y=k3 ,
∵ B(1,15),∴ ∴ y=15 .
当y=12时,= .
答:小明出发 小时和 小时时距家12千米.
20.分析:根据同旁内角互补两直线平行,内错角相等两直线平行和平行于同一条直线的两直线平行进行证明即可.
证明:∵ ∠1+∠3=180°,∴ CD∥OE.
∵ ∠2+∠3=180°,∠3+∠BOE=180°,
∴ ∠2=∠BOE,∴ AB∥OE.
∵ ∥ ∥ ,∴ AB∥CD,∴ AB∥OE∥CD.
21.分析:首先假设每月用水量为 m3,支付水费为y元.根据 的取值范围,列出y关于 的表达式y= 再根据表中二、三月的用水量及水费,求得b的值, 、c间的数值关系.采用反证法证明一月份用水量,求得c的值,那么 也即可确定.至此问题解决.
解: 设每月用水量为 m3,支付水费为y元.
则y=由题意知:0c≤5,∴ 8 8+c≤13.
从表中可知,第二、三月份的水费均大于13元,
故用水量15 m3、22 m3均大于最低限量 3,
将 分别代入②式
解得b=2,2 =c+19. ③
再分析一月份的用水量是否超过最低限量,不妨设9,
将 代入②,得9=8+2(9- )+c,即2 =c+17. ④
④与③矛盾.故9≤ ,则一月份的付款方式应选①式,则8+c=9,
∴ c=1代入③式,得 =10.
综上得 10,b=2,c=1.
22.分析:根据“三角形的外角等于与它不相邻的两内角和”和角平分线性质,
(1)先列出∠A、∠ABC、∠ACB的关系,再列出∠BOC、∠OBC、∠OCB的关系,然后列出
∠ABC和∠OBC、∠ACB和∠OCB的关系;
(2)先列出∠A、∠ABC、∠ACE的关系,再列出∠OBC、∠O、∠OCE的关系,然后列出∠ABC和∠OBC、∠ACE和∠OCE的关系.
解:(1)∠BOC=∠A+90°.理由如下:
∵ 在△ABC中,∠A+∠ABC+∠ACB=180°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
又∵ BO,CO分别是∠ABC,∠ACB的平分线,
∴ ∠ABC=2∠OBC,∠ACB=2∠OCB.
∴ ∠BOC+∠ABC+∠ACB=180°.
又∵ 在△ABC中,∠A+∠ABC+∠ACB=180°,
∴ ∠BOC=∠A+90°.
(2)∠BOC=∠A.理由如下:
∵ ∠A+∠ABC=∠ACE,∠OBC+∠BOC=∠OCE,
又∵ BO,CO分别是∠ABC和∠ACE的平分线,
∴ ∠ABC=2∠OBC,∠ACE=2∠OCE.
由以上各式可推得∠BOC=∠A.
八年级上册数学期中试卷练习题 2
一、选择题(每题3分,共30分)
1、在△ABC和△DEF中,AB=DE,∠B=∠E,如果补充一个条件后不一定能使△ABC≌△DEF,则补充的条件是()
A、BC=EFB、∠A=∠DC、AC=DFD、∠C=∠F
2、下列命题中正确个数为()
①全等三角形对应边相等;
②三个角对应相等的两个三角形全等;
③三边对应相等的两个三角形全等;
④有两边对应相等的两个三角形全等.
A.4个B、3个C、2个D、1个
3、已知△ABC≌△DEF,∠A=80°,∠E=40°,则∠F等于()
A、80°B、40°C、120°D、60°
4、已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为()
A、70°B、70°或55°C、40°或55°D、70°或40°
5、如右图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是()
A、10:05B、20:01C、20:10D、10:02
6、等腰三角形底边上的高为腰的一半,则它的顶角为()
A、120°B、90°C、100°D、60°
7、点P(1,-2)关于x轴的对称点是P1,P1关于y轴的对称点坐标是P2,则P2的坐标为()
A、(1,-2)B、-1,2C、-1,-2D、(-2,-1)
8、已知=0,求yx的值()
A、-1B、-2C、1D、2
9、如图,DE是△ABC中AC边上的垂直平分线,如果BC=8cm,AB=10cm,则△EBC的周长为()
A、16cmB、18cmC、26cmD、28cm
10、如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12,则图中阴影部分的面积为()
A、2cmB、4cmC、6cmD、8cm
二、填空题(每题4分,共20分)
11、等腰三角形的对称轴有条.
12、(-0.7)的平方根是.
13、若,则x-y=.
14、如图,在△ABC中,∠C=90°AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为__.
15、如图,△ABE≌△ACD,∠ADB=105°,∠B=60°则∠BAE=.
三、作图题(6分)
16、如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水.
(1)若要使自来水厂到两村的距离相等,厂址P应选在哪个位置?
(2)若要使自来水厂到两村的输水管用料最省,厂址Q应选在哪个位置?
请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.
四、求下列x的值(8分)
17、27x=-34318、3x-1=-3
五、解答题(5分)
19、已知5+的小数部分为a,5-的小数部分为b,求a+b2012的值。
六、证明题(共32分)
20、(6分)已知:如图AE=AC,AD=AB,∠EAC=∠DAB.
求证:△EAD≌△CAB.
21、7分已知:如图,在△ABC中,AB=AC,∠BAC=120o,AC的垂直平分线EF交AC于点E,交BC于点F。
求证:BF=2CF。
22、(8分)已知:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OE是CD的'垂直平分线。
23、(10分)(1)如图1点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交AB于点Q,交CA的延长线于点R。请观察AR与AQ,它们相等吗?并证明你的猜想。
(2)如图2如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,1中所得的结论还成立吗?请你在图2中完成图形,并给予证明。
【八年级上册数学期中试卷练习题】相关文章:
2024八年级上册数学期中试卷03-04
2023初二上册期中数学试卷10-01
初二数学上册期中试卷及答案06-19
八年级上册语文期中试卷06-11
初二上册数学期中模拟试卷09-17
2016初一数学上册期中试卷10-04
八年级英语上册期中模拟试卷及答案06-30
八年级上册语文期中试卷及答案08-08
八年级上册语文期中测试卷09-25