期末考试

大学高数易错知识点

时间:2024-09-17 04:16:56 啟宏 期末考试 我要投稿
  • 相关推荐

2022大学高数易错知识点汇总

  在我们平凡无奇的学生时代,说到知识点,大家是不是都习惯性的重视?知识点就是掌握某个问题/知识的学习要点。相信很多人都在为知识点发愁,以下是小编为大家整理的2022大学高数易错知识点汇总,希望能够帮助到大家。

2022大学高数易错知识点汇总

  大学高数易错知识点1

  1.在一元函数中,若函数在某点连续,则该函数在该点必有极限。若函数在某点不连续,则该函数在该点必无极限。

  2.在一元函数中,若函数在某点可导,则函数在该点一定连续。但是如果函数不可导,不能推出函数在该点一定不连续。

  3.基本初等函数在其定义域内是连续的,而初等函数在其定义区间上是连续的。

  4.若函数在某一区间上连续,则在这个区间上,该函数存在原函数。若函数在某一区间上不连续,则在这个区间上,该函数也可能存在原函数,不能说该函数在区间上必无原函数。

  5. 在二元函数中,两个偏导数存在与该函数的连续性没有关系。但是若果二元函数可微,则该函数必然连续。

  6.在一元函数中,驻点可能是极值点,也可能不是极值点。函数的极值点必是函数的驻点或导数不存在的点。在多元函数中,若偏导数存在,则极值点必为驻点,但驻点不一定是极值点。

  7.闭区间上的单调函数必可积。闭区间上的连续函数必可积。闭区间上有界且仅有有限个间断点的函数可积。

  8.有限个无穷小量的.和仍是无穷小量。无限个无穷小量的和不一定是无穷小量。有限个无穷小量之积是无穷小量。无限个无穷小量的积不一定是无穷小量。无穷小量与有界变量之积仍是无穷小量。无穷小量与常数的乘积不一定全是无穷小量。

  9.两个无穷大量之和不一定为无穷大量,两个无穷大量之积必为无穷大量。无穷大量与常数的乘积不一定全是无穷大量。

  10.可导与导函数的关系:可导是对定义域内的点而言的,处处可导则存在导函数,

  只要一个函数在定义域内某一点不可导,那么就不存在导函数,即使该函数在其它各处均可导。

  11.连续与可积的关系:如果函数在某区域连续,那么函数在该区域可积,反之,函数在某区域可积,不能保证函数在该区域连续,比如存在第一类间断点的函数不连续,但可积。

  12.切线与可导之间的关系:有切线不一定可导,是因为垂直于X轴的切线,它的斜率是无穷大,所以不可导。

  可以得出结论: 可导必有切线,有切线不一定可导(竖直切线)

  高数考试大题包括以下类型:

  1.求极限

  2.求不定积分或定积分

  3.求隐函数的偏导数

  4.求二阶连续偏导数

  5.二重积分

  6.求旋转体积或面积

  7.证明题

  1.求极限:在求极限的问题中,极限包括函数的极限和数列的极限,但在考试中一般出的都是函数的极限,求函数的极限中,主要是掌握公式,有些不常见的公式一定要记熟。这种类型的题一般属于简单题,但往更难一点的方向出题的话,它会和变上限的定积分联系在一起出题。

  2.求不定积分和定积分,在这类题中,一般会用到换元积分法和分部积分法,还有牛顿莱布尼茨公式。一般情况下,多做些题就没什么大问题。

  3.求偏导数:偏导数包括一阶偏导数和二阶偏导数。重点谈二阶偏导数,尤其是二阶混合偏导,在二阶以上的混合偏导中,用到的一个最重要的法则是链式法则。

  4.证明题:这种题还是离不开公式定理。一般情况下,用罗尔定理和微分中值定理即可,若再复杂的话,有时候就需要微分中值定理和积分中值定理连用,对于这类题,有时间则做,没时间就不做。

  大学高数易错知识点2

  1、导数存在的充分必要条件函数f(x)在点x0处可导的.充分必要条件是在点x0处的左极限lim(h→-0)[f(x0+h)-f(x0)]/h及右极限lim(h→+0)[f(x0+h)-f(x0)]/h都存在且相等,即左导数f-′(x0)右导数f+′(x0)存在相等。

  2、函数f(x)在点x0处可导=>函数在该点处连续;函数f(x)在点x0处连续≠>在该点可导。即函数在某点连续是函数在该点可导的必要条件而不是充分条件。

  3、原函数可导则反函数也可导,且反函数的导数是原函数导数的倒数。

  4、函数f(x)在点x0处可微=>函数在该点处可导;函数f(x)在点x0处可微的充分必要条件是函数在该点处可导。

  大学高数易错知识点3

  1、定理(罗尔定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即f(a)=f(b),那么在开区间(a,b)内至少有一点

  2、定理(拉格朗日中值定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么在开区间(a,b)内至少有一点

  3、定理(柯西中值定理)如果函数f(x)及F(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且F’(x)在(a,b)内的每一点处均不为零,那么在开区间(a,b)内至少有一点ξ,使的等式[f(b)-f(a)]/[F(b)-F(a)]=f’(ξ)/F’(ξ)成立。

  4、洛必达法则应用条件只能用与未定型诸如0/0、∞/∞、0×∞、∞-∞、00、1∞、∞ 0等形式。

  5、函数单调性的判定法设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么:(1)如果在(a,b)内f’(x)>0,那么函数f(x)在[a,b]上单调增加;(2)如果在(a,b)内f’(x)<0,那么函数f(x)在[a,b]上单调减少。

  如果函数在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,那么只要用方程f’(x)=0的根及f’(x)不存在的点来划分函数f(x)的定义区间,就能保证f’(x)在各个部分区间内保持固定符号,因而函数f(x)在每个部分区间上单调。

  6、函数的极值如果函数f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,f(x)f(x0)均成立,就称f(x0)是函数f(x)的一个极小值。

  在函数取得极值处,曲线上的切线是水平的,但曲线上有水平曲线的地方,函数不一定取得极值,即可导函数的极值点必定是它的驻点(导数为0的点),但函数的驻点却不一定是极值点。

  定理(函数取得极值的必要条件)设函数f(x)在x0处可导,且在x0处取得极值,那么函数在x0的导数为零,即f’(x0)=0.定理(函数取得极值的`第一种充分条件)设函数f(x)在x0一个邻域内可导,且f’(x0)=0,那么:(1)如果当x取x0左侧临近的值时,f’(x)恒为正;当x去x0右侧临近的值时,f’(x)恒为负,那么函数f(x)在x0处取得极大值;(2)如果当x取x0左侧临近的值时,f’(x)恒为负;当x去x0右侧临近的值时,f’(x)恒为正,那么函数f(x)在x0处取得极小值;(3)如果当x取x0左右两侧临近的值时,f’(x)恒为正或恒为负,那么函数f(x)在x0处没有极值。

  定理(函数取得极值的第二种充分条件)设函数f(x)在x0处具有二阶导数且f’

  (x0)=0,f’’(x0)≠0那么:(1)当f’’(x0)<0时,函数f(x)在x0处取得极大值;(2)当f’’

  (x0)>0时,函数f(x)在x0处取得极小值;驻点有可能是极值点,不是驻点也有可能是极值点。

  7、函数的凹凸性及其判定设f(x)在区间Ix上连续,如果对任意两点x1,x2恒有f[(x1+x2)/2]<[f(x1)+f(x1)]>[f(x1)+f(x1)]/2,那么称f(x)在区间Ix上图形是凸的。

  定理设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内具有一阶和二阶导数,那么(1)若在(a,b)内f’’(x)>0,则f(x)在闭区间[a,b]上的图形是凹的;(2)若在(a,b)内f’’(x)<0,则f(x)在闭区间[a,b]上的图形是凸的。

  判断曲线拐点(凹凸分界点)的步骤(1)求出f’’(x);(2)令f’’(x)=0,解出这方程在区间(a,b)内的实根;(3)对于(2)中解出的每一个实根x0,检查f’’(x)在x0左右两侧邻近的符号,如果f’’(x)在x0左右两侧邻近分别保持一定的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。

  在做函数图形的时候,如果函数有间断点或导数不存在的点,这些点也要作为分点。

  大学高数易错知识点4

  1、原函数存在定理定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。

  分部积分发如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的'幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u.

  2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。

  大学高数易错知识点5

  1、定积分解决的典型问题(1)曲边梯形的面积(2)变速直线运动的.路程

  2、函数可积的充分条件定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。

  定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。

  3、定积分的若干重要性质性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0.推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx.推论|∫abf(x)dx|≤∫ab|f(x)|dx.性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。

  性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。

  4、关于广义积分设函数f(x)在区间[a,b]上除点c(a

  大学高数易错知识点6

  1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

  2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的'个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。

  3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

  4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

  5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。

  6.微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。

【大学高数易错知识点】相关文章:

雅思词汇易错知识点12-08

2017高考历史备考易错易混知识点12-01

科目一考试易错知识点分析06-08

驾照科目一易错知识点归纳12-04

2017年高考政治易错、易混淆知识点汇总03-27

2017高考政治《经济生活》易错易混淆知识点汇总03-29

历年中考思品易错知识点汇总12-09

关于科目四“自救”系列易错知识点的汇总02-03

科目一知识点记忆口诀(附考试秘籍+易错知识点)07-27