- 相关推荐
计算机三级网络技术网络操作系统分类
引导语:计算机三级网络技术要求具备中小型网络系统规划、设计的基本能力。以下是百分网小编分享给大家的计算机三级网络技术网络操作系统分类,欢迎阅读学习!
网络操作系统分类
网络操作系统是为了让共享数据资源、软件应用以及共享打印机等网络特性服务达到最佳为目的,它主要有以下两种分类。
1.Windows类
这类网络操作系统为微软公司(Microsoft)开发,微软借助其开发的个人操作系统在计算机用户群里的高 普及率,使其网络操作系统同样具有最大的适用性。最成功的例子莫过于其Windows NT4.0+Windows 9 5的无盘网络时代,Windows NT4.0成为当时无盘网络的“国际标准”网络操作系统;虽然它比后来的Win dows 2000/2003 Server来说在功能上要逊色不少,但由于它对服务器的硬件配置要求低的特点,使其风靡 一时。
微软后来推出的网络操作系统,一般只用在中低档服务器中。依据版本的高低及面市时间,微软的网络 操作系统依次为:Windows NT 4.0 Serve、Windows 2000 Server/Advance Server,以及最新的Windows 2003 Server/ Advance Server等。
2.Linux类
目前它主要应用于中、高档服务器中。这是一种新型的网络操作系统,由国外软
件爱好者开发而成,它的最大特点就是开放源代码,可以免费得到许多应用程序以及自由修改操作系统内核 程序。中文版的Linux如RedHat(红帽子)、红旗Linux等在国内使用较多,得到了用户充分的肯定。另外安全性和稳定性方面,也是它的一大特色。
3.Unix类
典型的有SCO 、Solaris、FreeBSD等系统。
4.NetWare类
NetWare操作系统对网络硬件的要求较低,受到一些设备比较落后的中、小型企业,特别是学校的青睐。兼容DOS命令,其应用环境与DOS相似常用的版本有3.11、3.12、4.10、V4.11和V5.0等中英文版本。
局域网及应用
1.局域网的基本概念:局域网的定义、特点,局域网的分类,局域网的标准-IEEE802;
局域网(LAN-Local Area Network)是将分散在有限地理范围内(如一栋大楼,一个部门)的多台计算机通过传输媒体连接起来的通信网络,通过功能完善的网络软件,实现计算机之间的相互通信和共享资源。
局域网的特点
网络覆盖范围小(25公里以内)
选用较高特性的传输媒体:高的传输速率和低的传输误码率
硬软件设施及协议方面有所简化
媒体访问控制方法相对简单
采用广播方式传输数据信号,一个结点发出的信号可被网上所有的结点接收,不考虑路由选择的问题,甚至可以忽略OSI网络层的存在。
局域网的拓扑结构:总线型、环型、星型、树型等。主要使用的拓扑结构是总线型、星型和环型。
2.局域网介质访问控制方法:载波侦听多路访问/冲突检测,令牌总线,令牌环;
以太网工作原理:以太网是一种采用了带有冲突检测的载波侦听多路访问控制方法(CSMA/CD)且具有总线型拓扑结构的局域网。其具体的工作方法为:每个要发送信息数据的节点先接收总线上的信号,如果总线上有信号,则说明有别的节点在发送数据(总线忙),要等别的节点发送完毕后,本节点才能开始发送数据;如果总线上没有信号,则要发送数据的节点先发出一串信号,在发送的同时也接收总线上的信号,如果接收的信号与发送的信号完全一致,说明没有和其它站点发生冲突,可以继续发送信号。如果接收的信号和发送信号不一致,说明总线上信号产生了“叠加”,表明此时其它节点也开始发送信号,产生了冲突。则暂时停止一段时间(这段时间是随机的),再进行下一次试探。
令牌总线网的工作原理:令牌总线网是一种采用了令牌介质访问控制方法(Token)且具有总线型拓扑结构的局域网。它的工作原理为:具有发送信息要求的节点必须持有令牌,(令牌是一个特殊结构的帧),当令牌传到某一个节点后,如果该节点没有要发送的信息,就把令牌按顺序传到下一个节点,如果该节点需要发送信息,可以在令牌持有的最大时间内发送自己的一个帧或多个数据帧,信息发送完毕或者到达持有令牌最大时间时,节点都必须交出令牌,把令牌传送到下一个节点。令牌总线网在物理拓扑上是总线型的,在令牌传递上是环型的。在令牌总线网中,每个节点都要有本节点的地址(TS),以便接收其它站点传来的令牌,同时,每个节点必须知道它的上一个节点(PS)和下一个节点的地址(NS),以便令牌的传递能够形成一个逻辑环型。
令牌环网:令牌环网在拓扑结构上是环型的,在令牌传递逻辑上也是环型的,在网络正常工作时,令牌按某一方向沿着环路经过环路中的各个节点单方向传递。握有令牌的站点具有发送数据的权力,当它发送完所有数据或者持有令牌到达最大时间时,就要交就令牌。
3.局域网组网技术:局域网的常用设备,局域网的组建;
局域网组网所需的传输介质:组成一个局域网的传输介质可以是同轴电缆、双绞线、光纤、微波或无线电波。
局域网组网时所需的设备包括:网卡、集线器、中继器、局域网交换机等。
局域网的组建
1. 同轴电缆的组网方法之一,10Base-5标准:该标准使用波阻抗为50Ω的宽带同轴电缆组成标准的以太网,其中10表示数据传输速度、Base表示基带传输、5表示一个网段的最大长度为500米。如果要扩大网络规模,则可以使用中继器,但中继器的个数不能超过四个。因此,10Base-5的最大传输距离应为2.5km。粗缆所用的连接器是AUI接口。
2. 同轴电缆的组网方法之二,10Base-2标准:该标准使用波阻抗为50Ω的细同轴电缆组成标准的以太网,其中10表示数据传输速度、Base表示基带传输、2表示一个网段的最大长度为185米。细缆所用的连接器为BNC接口。
3. 双绞线组网方法:符合IEEE802.3 10MB/s基带双绞线的标准局域网称为10BASE-T,T表示传输介质类型为双绞线。在这种联网方式中,最大的特点是以集线器为连接核心,计算机通过安装具有RJ45插座的以太网卡与集线器连接,联网的双绞线长度(计算机到集线器、集线器到集线器)不能大于100米。
4 交换式局域网组网:与集线器方法基本类似,但网络连接中心是交换机而不再是集线器。
局域网的体系结构-IEEE802参考模型
自1980年以来,许多国家和国际标准化机构都在积极进行局域网的标准化工作,其中最有影响力的是IEEE制定的局域网的802标准,包括CSMA/CD、令牌总线和令牌环等,它被ANSI接受为美国国家标准, 被ISO作为国际标准(称为ISO8802标准)。这些标准在物理层和MAC子层上有所不同,但在数据链路层上是兼容的。
IEEE 802的LAN标准遵循OSI参考模型的分层原则,描述最低两层--物理层和数据链路层的功能以及与网络层的接口服务,其中数据链路层又分成两个子层:介质访问控制子层(MAC)和逻辑链路控制子层(LLC)。
IEEE802.1标准规定局域网的低三层的功能如下:
·物理层:
与OSI/RM的物理层相对应,但所采用的具体协议标准的内容直接与传输介质有关。
·介质访问控制(MAC)层:
具体管理通信实体接入信道而建立数据链路的控制过程。
·逻辑链路控制(LLC)层:
提供一个或多个服务访问点,以复用的形式建立多点--多点之间的数据通信连接,并包括寻址、
差错控制、顺序控制和流量控制等功能。这些功能基本上与HDLC规程一致。此外,在LLC层还提供本属于OSI/RM中网络层提供的两项服务,即无连接的数据报服务和面向连接的虚电路服务。
由图可见,MAC子层和LLC子层合并在一起,近似等效于OSI参考模型中的数据链路层。LLC子层协议与局域网的拓扑形式和传输介质的类型无关,它对各种不同类型的局域网都是适用的。然而,MAC子层协议却与网络的拓扑形式及传输介质的类型直接相关,其主要作用是介质访问控制和对信道资源的分配。
例如,总线型局域网主要采用竞争式的随机访问控制协议,最典型的是CSMA/CD,还有令牌总线、令牌环等标准。
目前IEEE已经制定局域网标准有10多个,主要的标准如下:
·IEEE 802.1A:局域网体系结构,并定义接口原语;
·IEEE 802.1B:寻址、网间互连和网络管理;
·IEEE 802.2:描述逻辑链路控制(LLC)协议,提供OSI数据链路层的上部子层功能,以及介质接入控制(MAC)子层与LLC子层协议间的一致接口;
·IEEE 802.3:描述CSMA/CD介质接入控制方法和物理层技术规范;
·IEEE 802.4:描述令牌总线网标准;
·IEEE 802.5:描述令牌环网标准;
·IEEE 802.6:描述城域网DQDB标准;
·IEEE 802.7:描述宽带局域网技术;
·IEEE 802.8:描述光纤局域网技术;
·IEEE 802.9:描述综合话音/数据局域网(IVD LAN)标准;
·IEEE 802.10:描述可互操作局域网安全标准(SILS),定义提供局域网互连的安全机制;
·IEEE 802.11:描述无线局域网标准;
·IEEE 802.12:描述交换式局域网标准,定义100Mb/s高速以太网按需优先的介质接入控制协议100VG-ANYLAN。
·IEEE802.14:描述交互式电视网(包括cable modem)
标准之间的相互关系如图所示。目前ISO的国际标准ISO8802-1至8802-6承认IEEE802.1至IEEE802.6。
4.高速局域网基本分类:光纤分布数字接口(FDDI),快速以太网,千兆以太网,交换式局域网,虚拟局域网VLAN。
光纤分布数字接口(FDDI)
FDDI的研究起始于1982年10月,经过近10年的努力,标准化工作取得成果,1993年,FDDI的系列标准被ISO采纳,对应的国际标准号为:ISO 9314。FDDI采用了IEEE 802.5令牌环技术。
FDDI的特点
1)FDDI的拓扑结构
FDDI采用环形结构(类似令牌环网),利用光纤将多个结点环接起来,环上的结点依次获得对环路的访问权利。为了提高可靠性和获得较高的数据传输速率,FDDI采用了双环结构,两个环路可同时工作,互为备份,逆向传输信息(即一个顺时针方向,一个逆时针方向)。实用中,常对两个环路进行不同的分工,例如:利用一个环路支持正常工作时的数据传输任务(称为主环),另一个环路作为一种冗余设施(称为副环),保证在主环故障或者结点故障时可以形成新的环路支持正常地工作。
2)多帧传输
FDDI起源于令牌环,但又不完全等同于令牌环。在令牌环方式中,获得令牌的结点发送数据帧,仅在所发帧返回源结点之后,该结点释放令牌,即:任一时刻,环中只有一个数据帧被传输。FDDI则采用不同的控制方法,获得令牌的结点,在发完数据帧之后,立即释放令牌,因此在所发帧尚未返回源结点时,相邻的结点可能掌握令牌,发送数据,即:任一时刻,环中允许有多个数据帧被传输。多帧传输,可以提高网络带宽的利用率。
3)传输编码
FDDI采用4b/5b编码和交替不归0编码,可以以125MHz的时钟频率获得100Mbps的数据带宽,既降低成本,又提高速率。
4)长距离通信
FDDI使用的主要传输媒体为光纤,光源为发光二极管。由于光纤特有的低损耗特性,使得线路的不间断距离增大。多模光纤可达2km,单模光纤可达100km,整个网环可达200km,因此,FDDI的覆盖范围远远超过传统局域网定义的范围。
5)高可靠性
在网络构造方面,FDDI除采用双环结构外,还采用双归宿冗余设计(即每个设备可以挂接到两个环路结点上),提高网络的可靠性;光纤本身无辐射,增加数据传输的保密性;端设备不直接接触电源,降低电源对设备的影响,提高了恶劣环境下(例如:强电系统)设备的安全性。
快速以太网
标准:IEEE 802.3u,其特点是继承了802.3的MAC访问控制技术(CSMA/CD)、帧格式、接口以及退避算法,仅是将传输速度从10Mbps提高到100Mbps,并减少了等待ACK帧的时间。它可以直接利用原有的线缆设施,从而支持10Mbps至100Mbps的无缝连接和自然过渡。
快速以太网
类型:
①100BASE-TX,传输编码采用4b/5b,使用2对5类UTP双绞线,最大传输距离100m;
②100BASE-FX,传输编码采用4b/5b,使用单模/多模光纤,最大传输距离分别是10/2km;
③100BASE-T4,使用4对3类以上UTP双绞线;
千兆以太网
千兆以太网
在1998年2月,IEEE802委员会正式批准了Gigabit Ethernet标准(IEEE802.3z)。
Gigabit Ethernet的传输速率比Fast Ethernet快10倍,数据传输速率达到1000Mbps。Giˉgabit Ethernet保留着传统的10Mbps速率Ethernet的所有特征(相同的数据帧格式、相同的介质访问控制方法、相同的组网方法),只是将传统Ethernet每个比特的发送时间由100ns降低到1ns。
IEEE802.3z标准在LLC子层使用IEEE802.2标准,在MAC子层使用CSMA/CD方法,只是在物理层作了一些必要的调整,它定义了新的物理层标准(1000BASE-T)。1000BASE-T标准定义了千兆介质专用接口(GMII,Gigabit Media Independent Interface),它将MAC子层与物理层分隔开来。这样,物理层在实现1000Mbps速率时所使用的传输介质和信号编码方式的变化不会影响MAC子层。
1000BASE-T标准可以支持多种传输介质。目前,1000BASE-T有以下几种有关传输介质的标准:
(1)1000BASE-T
1000BASE-T标准使用的是5类非屏蔽双绞线,双绞线长度可以达到100m。
(2)1000BASE-CX
1000BASE-CX标准使用的是屏蔽双绞线,双绞线长度可以达到25m。
(3)1000BASE-LX
1000BASE-LX标准使用的是波长为1300nm的单模光纤,光纤长度可以达到3000m。
(4)1000BASE-SX
1000BASE-SX标准使用的是波长为850nm的多模光纤,光纤长度可以达到300m~550m。
交换式局域网
(1)交换式局域网的基本结构
交换式局域网的核心部件是它的局域网交换机。为了保护用户已有的投资,局域网交换机一般是针对某一类局域网(如802.3标准的Ethernet或802.5标准的Token Ring)而设计的。典型的交换式局域网为交换式以太网(Switched Ethernet),它的核心部件是以太网交换机(Ethˉernet Switch)。Ethernet Switch可以有多个端口,每个端口可以单独与一个结点连接,也可以与一个共享式Ethernet的集线器HUB连接。如果一个端口只连接一个结点,那么这个结点就可以独占10Mbps的带宽。这类端口通常被称为“专用10Mbps的端口”。如果一个端口连接一个10Mbps的Ethernet,那么这个端口将被一个Ethernet网的多个结点所共享。这类端口就被称为“共享10Mbps的端口”。
对于传统的共享介质Ethernet来说,当连接在HUB中的一个结点发送数据,它将用广播方式将数据传送到HUB的每一个端口。因此,共享介质Ethernet的每一个时间片内只允许有一个结点占用公用通信信道。交换式局域网则从根本上改变了“共享介质”的工作方式,它可以通过Ethernet Switch支持交换机端口结点之间的多个并发连接,实现多结点之间数据的并发传输,因此可以增加局域网带宽,改善局域网的性能与服务质量。
(2)局域网交换机工作原理
根据交换机的帧转发方式,交换机可以分为以下3类:①直接交换方式。
②存储转发交换方式。③改进直接交换方式。
(3)局域网交换机的特性
局域网交换机的特性主要有以下几点:
①低交换传输延迟。交换式局域网的主要特性之一是它的低交换传输延迟。从传输延迟时间的量级来看,局域网交换机为几十μs,网桥为几百μs,而路由器为几千μs。
②高传输带宽。对于10Mbps的端口,半双工端口带宽为10Mbps,而全双工端口带宽为20Mbps;对于100Mbps的端口,半双工端口带宽为100Mbps,而全双工端口带宽为200Mbps。③允许10Mbps/100Mbps共存。典型的局域网交换机Ethernt Switch允许一部分端口支持10BASE-T(速率为10Mbps),另一部分端口支持100BASE-T(速率为100Mbps),交换机可以完成不同端口速率之间的转换,使10Mbps/100Mbps两种网卡共存在同一网络中。在采用了10Mbps/100Mbps自动侦测(Autosense)技术时,交换机的端口支持10Mbps/100Mbps两种速率、全双工/半双工两种工作方式,端口能自动测试出所连接的网卡的速率是10Mbps是100Mbps,工作方式是全双工还是半双工。端口能自动识别并做相应的调整,从而大大地减轻了网络管理的负担。
④局域网交换机可以支持虚拟局域网服务。
6.虚拟局域网
(1)虚拟网络的基本概念
虚拟网络是建立在局域网交换机或ATM交换机之上的,它以软件方式来实现逻辑工作组的划分与管理,逻辑工作组的结点组成不受物理位置的限制。同一逻辑工作组的成员不一定要连接在同一个物理网段上,它们可以连接在同一个局域网交换机上,也可以连接在不同的局域网交换机上,只要这些交换机是互连的。当一个结点从一个逻辑工作组转移到另一个逻辑工作组时,只需要通过软件设定,而不需要改变它在网络中的物理位置。同一个逻辑工作组的结点可以分布在不同的特理网段上,但它们之间的通信就像在同一个物理网段上一样。
(2)虚拟局域网实现技术
交换技术本身就涉及网络的多个层次,因此虚拟网络也可以在网络的不同层次上实现。不同虚拟局域网组网方法的区别,主要表现在对虚拟局域网成员的定义方法上,通常有以下4种:①用交换机端口号定义虚拟局域网;②用MAC地址定义虚拟局域网;③用网络层地址定义虚拟局域网;④IP广播组虚拟局域网。四、局域网的物理设备
【计算机三级网络技术网络操作系统分类】相关文章:
计算机三级网络技术Windows操作题03-21
2015计算机三级《网络技术》复习重点:网络操作系统08-13
计算机三级网络技术题库06-22
计算机三级网络技术展望09-05
计算机三级网络技术辅导知识07-15
计算机三级《网络技术》训练试题09-06
计算机三级《网络技术》考点:网络应用技术07-30
计算机三级网络技术辅导:网络安全技术08-20
计算机三级网络技术辅导:网络应用技术08-25