- 相关推荐
2017年基金《证券基金基础》要点:正态分布
导语:正态分布是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。
正态分布:
正态分布是最重要的一类连续型随机变量分布,当一个随机变量的取值受到大量不同因素作用的共同影响,并且单个因素的影响都微不足道的时候,这个随机变量就服从或近似服从正态分布。
正态分布密度函数的显著特点是中间高两边低,由中间(X=p)向两边递减,并且分布左右对称,是一条光滑的“钟形曲线”。
正态分布距离均值越近的地方数值越集中,而在离均值较远的地方数值则很稀疏;这意味着正态分布出现极端值的概率很低,而出现均值附近的数值的概率非常大。同时图像越“瘦”,正态分布集中在均值附近的程度也越大。
术语特征:
服从正态分布的变量的频数分布由 、 完全决定。
(1) 是正态分布的位置参数,描述正态分布的集中趋势位置。正态分布以 为对称轴,左右完全对称。正态分布的均数、中位数、众数相同。
(2) 描述正态分布资料数据分布的离散程度, 越大,数据分布越分散, 越小,数据分布越集中。 也称为是正态分布的形状参数, 越大,曲线越扁平,反之, 越小,曲线越瘦高。
正态分布集中性:正态曲线的高峰位于正中央,即均数所在的位置。对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ):均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平。
u变换:为了便于描述和应用,常将正态变量作数据转换。μ是正态分布的位置参数,描述正态分布的集中趋势位置。正态分布以X=μ为对称轴,左右完全对称。正态分布的均数、中位数、众数相同,均等于μ。
σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。
分布曲线:
标准正态分布
1.标准正态分布是一种特殊的正态分布,标准正态分布的μ和σ2为0和1,通常用 (或Z)表示服从标准正态分布的变量,记为 Z~N(0,1)。
2.标准化变换:此变换有特性:若原分布服从正态分布 ,则Z=(x-μ)/σ ~ N(0,1) 就服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。故该变换被称为标准化变换。
3. 标准正态分布表
标准正态分布表中列出了标准正态曲线下从-∞到X(当前值)范围内的面积比例 。
正态曲线下面积分布
1.实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。不同 范围内正态曲线下的面积可用公式计算。
2.几个重要的面积比例
轴与正态曲线之间的面积恒等于1。正态曲线下,横轴区间(μ-σ,μ+σ)内的面积为68.27%,横轴区间(μ-1.96σ,μ+1.96σ)内的面积为95.00%,横轴区间(μ-2.58σ,μ+2.58σ)内的面积为99.00%。
【基金《证券基金基础》要点:正态分布】相关文章:
基金从业《证券基金基础》试题10-05
2017年基金从业资格《证券基金基础》要点:资本结构06-27
2017年基金从业《证券基金基础》试题08-12
2016基金从业《证券投资基金》基础习题08-13
2017基金从业《证券基金基础》备考习题07-08
基金从业证券投资基金基础知识习题09-14
基金从业证券投资基金基础章节知识题06-17