教学设计

数学《植树问题》教学设计

时间:2024-11-04 10:11:13 教学设计 我要投稿

数学《植树问题》教学设计

  作为一名人民教师,就有可能用到教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。教学设计应该怎么写呢?以下是小编帮大家整理的数学《植树问题》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

数学《植树问题》教学设计

数学《植树问题》教学设计1

  【教学目标】

  知识目标:

  1、利用学生熟悉的生活素材、通过动手操作等实践活动,让学生感悟间隔数与棵数之间的关系。

  2、让学生自主探索、讨论、交流,使学生发现并理解植树问题(两端要种)的解题规律,并利用规律解决一些实际问题。

  能力目标:

  1、让学生经历分析、思考、解决问题的整个探究过程,并从中学习一些解决问题的方法和策略。

  2、通过探索间隔数与植树棵数之间的规律,初步体会化复杂为简单和一一对应的数学方法。

  情感目标:

  培养学生的分析意识,养成良好的交流习惯,感悟日常生活中处处有数学,体验学习的成功喜悦。

  【教学重点】

  教学重点:引导学生发现棵数与间隔数的关系。

  【教学难点】

  理解间隔与棵树之间的规律并运用规律解决问题。

  【教学过程

  一、激趣导入,谜语导入激发学生的兴趣。

  同学们!你们喜欢猜谜游戏吗?老师说一个谜语让同学们猜一猜,看谁能最先猜出来。

  一颗小树五个叉

  不长叶子不开花

  能写会算还会画

  天天干活不说话

  谜底:(手)

  出示课件,让学生举手回答谜底,并作表扬或鼓励。

  1、师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手。(五指伸直、张开)师:张开的五指中有了一些空隙。数学中我们把这个“空隙”叫“间隔”。同学们看一看,3根手指中有几个间隔?那么4根手指呢?5根呢?

  在我们的生活中,像这样的例子很多很多,比如路灯、公路边上的树和摆放的'花盆,它们之间都有间隔。生活中的“间隔”到处可见,你能举几个例子吗?它们都有一个共同的特征,都有间隔,那么在数学上我们把研究与间隔有关的问题叫做植树问题,今天我们就一起来研究它。

  二、构建模型

  1、了解植树问题中棵数与间隔数之间的关系

  师:在植树问题中,有几种情况:一种是两端都栽,一种是只栽一端,还有一种是两端都不栽。今天这节课我们只学习“两端都栽”的情况(课件出示三种情况)。板书:两端都栽。那么两端都栽时,棵数与间隔数之间有什么关系呢?(出示课件,板书棵数、间隔数)当只有3棵树时,它们之间有几个间隔呢?4棵树时有几个间隔呢?5棵树呢?现在同学们想象一下,如果有10棵树呢?50棵树呢?100棵树呢?那么你们发现了棵数与间隔数之间有什么关系呢?(棵数比间隔数多1,间隔数比棵数少1)那谁会用一个等式来表示一下呢?(棵数=间隔数+1,间隔数=棵数-1)(出示板书)

  3、利用模型解决问题

  1、出示招聘启示:我们学校将对校园进行绿化,特聘请校园设计师设计一份植树方案,择优录取。同学们想成为这名设计师吗?出示设计要求:在操场边上,有一条20米长的小路,学校计划在小路的一边种树,每隔5米栽一棵(两端都栽),一共要栽几棵树?

  (1)说说从题中你知道了哪些数学信息?(让学生举手回答)

  (2)判断:下面哪种情况是一边种树呢?下面哪幅图是两端都栽的情况呢?(课件出示)

  (3)分析题意。

  “全长20米”是指小路的总长(板书:总长);“一边”是小路的一侧,指左边或右边;“每隔5米栽一棵”是每两棵树之间的距离,简称“间距”(板书:间距)。“两端要栽”指起点与终点处都要栽。

  (4)算一算一共需要多少棵树苗?(学生独立完成)

  (5)学生汇报交流。

  (6)反馈答案:

  方法1:20÷5=4(棵)

  方法2:20÷5=4(段)4+1=5(棵)

  到底哪一个是对的呢?大家都认为这种方法是正确的,那么算式中的“20”表示什么呢?“5”表示什么?“20÷5=4(个)”又表示什么?(板书:间隔)为什么“+1”?(两端要栽,它比间隔多1)“4+1=5(棵)”表示什么?(植树棵树)这其实就是运用了“间隔数+1=棵数”这个规律。(课件演示分析过程)

  谁能够完整地说一说这个算式的意思?

  2、试一试。师:如果老师把题目改一改,看看谁还会?课件出示例题1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  (1)和刚才这题比较,你想说什么?

  (2)学生独立列式并汇报。

  3、巩固新知师:恭喜大家,顺利完成了任务!你们还想接受新一轮的挑战吗?

  (1)出示第一关:说一说。让学生自己读题,抢答。

  (2)同学们真棒,现在老师想请同学们在小组内把我们今天学的知识整理一下,看哪一个小组最先完成。(老师课件出示题目,学生完成手里的学习单)学生完成后汇报交流(投影学生完成的情况,并请学生说说自己是怎样想的)

  (3)拓展练习。同学们真棒,这两道关卡都没有难住同学们,现在还有最后一道关卡,如果你能闯过最后一关,那今天这节课就要给同学们打100分了。课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (1)学生独立阅题,说说这个题目中又有哪些数学信息呢?

  (2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)

  (3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们应该先算什么?

  (4)学生独立解答并汇报:

  (5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个)35×6=210(米)

  (6)擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?

  (7)有谁听懂了这个算式的意思,说给大家听一听?

  四、回顾小结

  这么难的题目让你们解答出来了,看来今天收获一定不少?谁来说说你今天都有哪些收获?

  板书设计

  植树问题——两端都种

  棵数=间隔数+1

  间隔数=棵数-1=总长÷间距

  总长=间隔数×间距

  间距=总长÷间隔数

数学《植树问题》教学设计2

  设计理念:

  笛卡儿说过:“数学是使人变聪明的一门科学”,而数学思想则是传导数学精神,形成科学世界观不可缺少的条件。数学思想方法反映着数学概念、原理及规律的联系和本质,是学生形成良好知识结构的纽带,是培养学生能力的桥梁。新课标下的每册教材都通过“数学广角”来进一步渗透数学学习的思想方法。在植树问题的教学中,主要是向学生渗透一种在数学学习上、在研究问题上都很重要的思想——化归思想。

  在设计上结合新课标的要求,根据教学内容的特点及学生的认知基础,通过解决矛盾冲突的植树问题,让学生在借助图、式分析题意的过程中,体验到植树问题的另一类型。再通过学生的合作探究,建构(两端不种)植树问题的模型,发现解决这类问题的规律,接着运用模型解决生活中的类似问题,渗透“化归思想”。教学中注重于培养学生运用所学知识,举一反三,解决实际问题的能力,也注重于让学生体验知识、经验获得的过程,培养学生借助图示解决问题的意识以及渗透“化归思想”。

  教学目标:

  1、知识与能力目标:

  通过探究发现一条线段上两端都不种的植树问题“棵数=间隔数-1”的规律。

  2、过程与方法目标:

  使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3、情感态度与价值观目标:

  让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。

  教学重点:

  理解“两端都不种”的植树问题的规律

  教学难点:

  应用“两端不种”的'植树方法去解决生活中类似的问题

  教学过程:

  一、创设情境,发现问题

  同学们学过植树的知识吗?请大家来帮忙解决下面这个问题

  房屋间的距离是60米,要在两间小屋之间植树,每隔10米种1棵,需要多少棵树?

  误区:60÷10=6(个)

  6+1=7(棵)

  两端不种树还是这样来求棵数吗?这就是我们本节课要学的知识(两端不种)的植树问题

  (设计意图:矛盾的冲突更能引发学生探索的兴趣。学生在已经学过两端都种的植树规律的前提下很大程度上会受到误导把棵数求成间隔数+1,这样引起学生认识上的矛盾从而体会更深刻。)

  二、化繁为简,经历猜测、验证的过程探索规律

  师:怎么来求棵数呢?与上节课的知识有什么联系,又有什么区别

  讨论:相同之处都是先求出间隔数;不同之处求棵数的方法不一样

  师:我们来大胆猜测一下“两端不种”的植树时怎样求棵数?

  猜测:棵数=间隔数+1

  是不是这样呢,我们来验证一下(植树)

  两端不种

  棵数=间隔数+1

  (设计意图:让学生经历猜测与验证的过程探索出规律建立起数学模型,为下一环节的例题深入学习与应用规律做好了铺垫)

  二、深入学习应用“两端不栽”的规律

  1.师:同学们太了不起了,通过举简单的例子,自己又发现了“两端不栽”的规律:棵树=间隔数-1。我们再回到刚才的问题,你会做了吗?

  2.例2大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米。一共要栽几棵树(学生独立完成)

  ②师:同学们讨论一下解决这道题要注意什么?

  课件闪烁:将“两旁栽树”,“两端不用栽”

  学生展示:60÷3=20(个)

  20-1=19(棵)

  19×2=38(棵)

  答:一共要栽38棵树。

  小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。

  (设计意图:通过例2探索让学生更深入的理解植树中“两端不栽”这种情况的处理及方法)

  三、回归生活,实际应用

  1.为了迎接我校的十周年校庆,要在校园里相距20米的两棵树间每隔4米挂上彩旗,需要准备多少面彩旗?

  20÷4=5(个)

  5—1=4(面)(面数=间隔数-1)

  问:为什么要—1?这相当于今天学习的植树问题中的那种情况?

  2.张老师从一楼到四楼去上数学课,学校每层有26级楼梯,张老师一共走了几级楼梯?

  4-1=3(层)(层数=楼数-1)

  3×26=78(级)

  (问你们家住几楼呀?如果你们家的楼房也是每层26级楼梯,你回到家一共要走几级楼梯?)

  3一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?(次数=段数-1)

  5-1=4(次)(次数=段数-1)

  4×8=32(分)

  (设计意图:生活中有‘两端不种’植树问题的原型,也有植树问题的变式练习,让学生充分感受数学就在生活当中)

  四、全课总结

  通过今天的学习,你有哪些收获?

  (设计意图:让学生回顾本节知识达到及时巩固的作用)

  五、板书设计

  植树问题(两端不种)

  棵数=间隔数生活中

  间隔数=全长÷间隔长挂彩旗:面数=间隔数-1、

  学生展示:60÷3=20(个)上楼:层数=楼数-1

  20-1=19(棵)锯树木:次数=段数-1

  19×2=38(棵)

  答:一共要栽38棵树。

  (设计意图:简要的板书让学生容易抓住本课的重点知识,一目了然。)

数学《植树问题》教学设计3

  教学目标:

  1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。

  2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。

  教学重点:建立并理解“点数=间隔数+1”的数学模型。

  教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。

  教学准备:课件。

  教学过程:

  一、情境出示,设疑激趣

  教师:同学们,我们都有一双勤劳的双手,它不仅能写,能画,其实我们的手指中还隐藏了许多数学知识!现在请大家伸出你们的左手,这里有几根手指呢?

  预设:5根

  教师:那手指与手指间的空隙叫什么呢?

  预设:间隔

  教师:在数学上,我们通常把两个手指间的空隙叫做间隔。大家观察一下,5根手指之间有几个间隔呢?

  预设:4个间隔

  教师:现在再看,现在伸出了几根手指呢?

  预设:4根间隔

  教师:4根手指之间有几个间隔呢?

  预设:3个间隔

  教师:5根手指之间有4个间隔,4根手指之间有3个间隔,你们发现手指数和间隔数之间有数量关系了吗?

  预设1:手指数比间隔数多1。

  预设2:间隔数比手指数少1.

  教师:那你能不能用数学式子来表示手指数与间隔数的关系呢?

  预设1:手指数=间隔数+1。

  预设2:间隔数=手指数-1.

  教师:连手上都有这么多数学奥秘,看来数学真是无处不在!这节课我们就来研究跟“间隔”有关的植树问题。(板书课题)

  二、引入新知,经历过程,感受方法

  教师:请看,请大家默读一下:(课件出示问题)。

  引例:同学们准备在全长20米的小路一边植树。每隔5米栽一棵(两端要栽)那么这条路的一边将被树隔成了几段?

  教师:告诉我们 哪些条件?(提问)要求什么问题?(提问)

  教师:同学们先用尝试用线段图来表示他们之间的关系。(学生动手并提问完成)

  教师:这里的有几个间隔?

  预设:4个

  教师:那你们能不能用一个数学式子来表示?

  预设:20÷5=4

  教师:20表示什么?5表示什么?4表示什么?(分别提问)

  预设:20表示这条路的长度(一般我们把它称为总长),5表示每隔5米栽一棵(我们一般把它称为间隔长),4表示有4个间隔。

  教师:4个间隔相当于4段,所以我们数学上通常把有几段称为段数。所以4后面的单位是段。因此我们就得到了公式:全长÷间隔长=段数(提问)。根据除法算式中的关系,间隔长该怎么求?(提问)段数该怎么求?(提问)

  教师:那现在如果我想在这条路上种树,一共需要几棵树苗呢?

  预设:5棵。

  教师:怎么列数学关系式?(提问)

  预设:4+1=5(棵)

  教师:为什么这样列呢?

  预设:因为两端都栽。

  教师:你们都跟他一样吗?所以你发现了树的棵树与段数之间的关系了吗?(提问推出棵树与段数的两个公式)

  教师:刚才我们是在20米长的.路上种树,那现在如果在100米长的路上种树呢?你还会吗?请看例1(课件出示例1)。大家在书本上完成。

  例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?

  (请同学上台展示)

  三、利用新知,解决问题

  教师:连例题都难不倒你们!同学们真是太聪明了!可是,在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?大家请看(出示生活中的图片实例)可见植树问题的应用领域是非常广泛的,下面就请大家应用刚才学的知识帮老师解决几个问题。

  教师:今年的圣诞节刚结束,为了度过一个美好的圣诞节,张老师前几天在家可花了不少的心思!你们看——(分别出示3道练习)

  练习1.我买了装礼物的袜子,像这样每两只袜子之间隔0.5米,挂成一排长8米(两端都挂),一共买了几只袜子?

  教师:现在老师要把题目难度加大。(做完的同学可以把你的想法跟同桌说说)

  练习2.我又买了21只铃铛,挂成一排,长6米(两端都挂),每两只铃铛之间要隔几米?

  练习3.我还买了像圣诞树的衣服来装扮,15人排成一排,迎接圣诞老人(两端都排),每两个人之间隔2米,这个队伍有几米呢?

  四、回顾思考,全课总结

  教师:通过这一节的学习,你有什么收获?

  思考:假如只栽一端或两端都不栽,那又会是什么情形呢?同学们课后去探究吧!

  五、逆向思考,拓展新知

  教师:最后老师有一个难度很大的题目想留给同学们回家思考!请看:

  练习4.在圣诞节这天,老师看见100位圣诞老人一起来给我们送礼物,他们并列排成两队(两端都排),每前后两个圣诞老人之间相距1米,则这个队伍排了有多长?

  六、布置作业

数学《植树问题》教学设计4

  教材分析

  两端植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树的要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。

  学情分析

  让学生学习应用植树问题的思想方法解决一些简单的实际问题,培养学生观察、分析及推理的能力,培养他们探索数学问题的兴趣和发现绿化的重要性。

  教学目标

  1、理解在线段上植树(两端栽)的情况中“棵数=间隔数+1”的关系。

  2、利用线段图理解“棵数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距的关系,解决生活中的'实际问题。

  3、能将植树问题推广到生活中的其他问题中,学会通过画线段图来分析理解题意。

  教学重点和难点

  [教学重点]:用不完全归纳法总结并理解“点数=间隔数+1”。

  [教学难点]:掌握用线段图解决生活中的数学问题的方法。

  教学过程

  一、创设情境

  1、听唱歌曲《春天在哪里》,让学生感受春天的美好。

  2、比较两组图片的不同,让学生说出植树对人类的重要意义,引出本节课所要学习的的植树问题。

  二、探究新知

  (展示题目)

  (一)宝塔山下有一条长20米的小路,一边等距离植树,两端都栽,可以怎样植?用线段图表示你的方法。(小组讨论)、

  1、学生画线段图表示,教师巡视指导。

  2、指名回答。

  3、教师把学生的想法用表格出示如下:

  4、引导总结:

  5、生:手指线段图

  师:在线段图上,点数和间隔数又有怎样的关系呢?

  生:点数=间隔数+1

  6、师:总长与间距和间隔数又有怎样的等量关系呢?

  生:总长=间距×间隔数

  7、尝试应用:

  三、巩固新知

  四、小结本节内容

  五、教学作业

数学《植树问题》教学设计5

  单元教学目标:

  1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。

  2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学时数:4课时

  数学广角植树问题(一)

  第一课时教学内容:

  教科书第117页118页的例1、例2

  教学目标:

  1、利用学生熟悉的生活情境,通过动手操作的'实践活动,让学生感悟分的段数与植树棵树之间的关系。

  2、通过小组合作、交流、使学生能理解段数与植树棵树之间的规律。

  3、通过实践活动激发热爱数学的情感,感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点、难点:

  教具:

  挂图、直尺

  教学过程:

  一、创设情境,引入课题

  1、每位小朋友都有一双灵巧的小手,它不但会写字,画画、干活,在它里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手,请每一位学生高举起右手,并将五指伸直,关拢。

  师:现在请每位小朋友将五指张开,数一数,张开后有几个空格?(4个)

  师:在数学上,我们把这个空格叫间隔。刚才,我们把五指张开,有4个空格,也就是4个间隔。

  2、举例说出生活中的间隔到处可见,比如:在马路边种树,每两棵树之间有一段距离,我们就把这一段距离叫做一个间隔,楼梯、锯木头等。

  3、大家清楚地看到,5个手指之间有4个间隔,那么,将手指换成小树,5棵小树之间有几个间隔(4个),6棵呢?7棵呢?

  今天,我们就来学习有趣的植树问题。

  (一)出示:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  1)同桌相互讨论。

  2)有线段图表示你的方法

  3)学生汇报

  4)引导总结:

  两端要栽的时候,比较间隔数和棵数,你得出什么规律?(生:棵树比间隔数多1)

  你能用一个式子表示两端都栽的棵数和间隔数的关系吗?

  板书:棵数=间隔数+1

  5)在线段图上,又有怎样的关系呢?

  点数=间隔数+1

  6)这个问题应是:1005=20(个)间隔数

  20+1=21(棵)棵数

  巩固练习

  (一)书第118页的做一做独立完成,指名反馈。

  (二)出示:大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?

  1)读题,理解题。

  2)分组看图讨论。

  3)尝试列式计算。

  4)交流:603=200间隔数

  两端不栽树:20-1=19(棵)

  192=38(棵)

  5)质疑:

  为什么减1?为什么乘2?

  比较例1与例2的不同?小组讨论,再交流

  例1两端要栽树,所以棵数比间隔大1:例2两端不栽树,所以棵数比间隔少1。

  巩固练习二:

  教科书第119页做一做1、2题

  学生独立完成,集体反馈。

  三、本课小结:

  通过今天的学习,你有什么收获?

数学《植树问题》教学设计6

  教学目标分析(结合课程标准说明本节课学习完成后所要达到的具体目标):

  知识技能目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔 数与植树棵数之间的关系;

  2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单 的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律, 并应用规律来解决问题的能力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、通过实践活动激发热爱数学的情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描述):

  通过平时的观察,我发现四年级学生的思维仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。但这种能力不是那么强,在学习中很难独立的完成学习任务,但学生的合作意识已经有了很大的提高。能在学习中在教师的引导下积极参与学习,完成学习任务。适当的鼓励是激励学生学习,克服困难的最好方法。在生活经验方面,学生们看到过“道路两旁每隔一定距离会种有树”,但是,在这样的现象中包含哪些数学概念他们是不清楚的,需要教师针对此予以明确;在数学知识方面,他们知道“依此类推”和“除法的意义”,像“100米的小路,每隔5米栽一棵”,他们可以通过计算和画图的方法解决,只是对这些量之间存在的数量关系还有待进一步探究。

  教学过程(按照教学步骤和相应的活动序列进行描述,要注意说明各教学活动中所需的具体资源及环境):

  一、创设情景,激发兴趣

  1、猜谜导入揭题

  师:“两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。”(手)

  师:对,我们都有一双灵巧的手,请你们伸出右手,五指张开,用数学的眼光看一看,你发现了什么?

  数一数,5个手指之间有几个空格?在数学上,我们把空格叫做间隔,也就是说,5个手指之间有4个间隔?间隔数为4。(师伸出4根手指、3根手指、2根手指)现在有几个间隔?

  师:生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的.问题——植树问题。(板书课题:植树问题)

  【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有的关系,使学生感受数学与生活的密切联系,在不知不觉中展开对数学问题的探索,激发探求植树问题的欲望。

  二、经历探究,发现规律

  1、激趣引入,启发探究积极性

  (课件出示)出示江口小学为绿化环境的招聘启事及设计要求

  招聘启示

  学校将进行校园环境美化,特诚聘环境设计师一名。要求设计植树方案一份,择优录取。

  江口小学

  20xx.6

  设计要求:

  在一条长20米的小路一边等距离植树,两端要栽。

  【设计意图】通过招聘启示让学生设计植树方案的出发点是让所有参与者都能平等的、积极主动的参与到学习的全过程中,在参与中学习和构建新的知识、形成能力。

数学《植树问题》教学设计7

  设计说明

  “植树问题”对于学生来说比较抽象,学生接受起来较为困难,本节复习课,就是让学生在已有知识的基础上,巩固所学,理清思路,让学生的数学能力得到进一步的提高。

  1.通过对比,提高学生解决问题的能力。

  植树问题的复习分为三个类型:两端都栽树、两端都不栽树和在封闭路线上栽树。由于它们之间都存有共性:都隐藏着间隔数与棵数之间的关系,因此,本节课把所有类型的植树问题归纳在一起,通过观察比较,得出公式,总结这一类问题的解决方法和策略。最后能够运用所学知识解决所有和植树问题相关的实际问题。

  2.通过变式练习,培养学生灵活运用所学知识的能力。

  在学生进一步明确了三个类型的“植树问题”的'解决方法和策略之后,设计了不同难易程度的练习,让学生根据前面发现的规律来解决。同时做好植树问题和生活实际问题的对比沟通,培养学生的应用意识,提高学生学习数学的兴趣,提高学生运用所学知识解决实际问题的能力。

  课前准备

  教师准备:PPT课件、课堂练习卡

  学生准备:课堂练习卡

  教学过程

  ⊙创设情境,导入复习

  第七单元,我们共同研究了“植树问题”,想一想,“植树问题”存在几种情况,它们的关系是怎样的呢?指名回答后,老师小结。

  (1)在线段上栽树。

  ①两端都栽:棵数=间隔数+1

  ②两端都不栽:棵数=间隔数-1

  (2)在封闭路线上栽树:棵数=间隔数。

  设计意图:通过引导学生进行知识回顾,进一步理解植树问题中存在的规律,为下一步分层练习作铺垫。

  ⊙分层练习,强化提高

  1.基本练习。

  (1)在练习本上画一条10厘米长的线段,每隔2厘米画一朵小花,两端都要画,一共可以画多少朵小花?

  (2)一个堤坝长200米,沿堤坝栽一行小树,每隔10米栽一棵,只有一端栽,一共可以栽多少棵?

  (3)在一段公路的一边栽95棵树,两端都栽,每两棵树之间相距5米,这段公路全长多少米?

  (4)公园大门前的公路长80米,要在公路两边栽上树,每两棵树相距8米(两端也要栽)。园林工人共需要准备多少棵树?

  (学生自由解答,小组内交流,然后教师组织全班交流,指名学生回答,其他同学纠正错误)

  师:同学们真聪明,计算得这么准确,下面老师又为你们准备了一些题目,有没有信心完成?

  2.综合练习。

  一个挂钟,1时敲1下,3时敲3下,12时敲12下,当这个挂钟3时时敲3下共用了4秒钟。当12时时敲12下要用多少秒?

  (1)读题明确题意。

  (2)分组合作探究。

  设计意图:通过分层练习,层层深入地回顾了解决问题的步骤和方法,从而进一步提高了学生的解题能力。

  ⊙全课总结

  通过这节课的复习,我们对植树问题进行了回顾,大家有什么收获呢?

  ⊙布置作业

  1.校园里有一段长80米的路,在路的一侧栽松树,每隔5米栽一棵,一共可以栽多少棵?

  2.要在100米的马路两旁栽树,每隔5米栽一棵,一共可以栽多少棵?

  3.一个圆形花圃周围长40米,沿花圃一周每隔4米插一面红旗,每两面红旗的中间插一面黄旗,花圃周围各插了多少面红旗和黄旗?

  4.一个小朋友以相同的速度在路上行走,从第1棵树走到第17棵树需要16分钟。如果这个小朋友走了30分钟,应走到第几棵树?

数学《植树问题》教学设计8

  第二课时教学内容:

  教科书第120页的内容

  知识目标:

  通过开放题的教学,培养学生探究数学问题的兴趣,引导学生细致严密地考虑问题;

  能力目标:

  让学生自己动手,自己实验,得出规律,解决生活中的实际问题。

  情感目标:

  通过小组合作、交流,培养学生的协作精神。

  教(学)具准备:

  长方形泡沫塑料板(每小组一块,正面画圆,背面画其他的封闭图形),牙签,画有长方形的练习纸。

  教学过程:

  一、复习铺垫

  同学们,前面我们已经研究了一些植树问题,现在我这儿有三棵小树,要把它种在公路的一侧,想请你帮我想想有几种种法?

  指名回答,引导学生说出棵数与段数的关系:

  两端都种只种一端两端都不种

  棵数=段数+1棵数=段数棵数=段数-1

  请你把这个规律跟同桌说一遍;教师在黑板上贴示。

  二、引入新课:

  前几节课我们考虑的都是在直条线上种树,都可以找到线路的端点,可我们生活中经常会碰到在湖的四周植树,在花坛边缘种盆花

  这些你能找到它的端点来吗?这就是我们今天要重点来讨论的内容封闭路线上的植树的规律

  1、湖、花坛等等,它们的外围线路都是封闭的。它和不封闭路线上的植树规律是否相同呢?我们自己动手种一下就知道了。

  1)、请同学们以四人小组为单位,用牙签当树苗,在泡沫塑料板的圆上种几棵数(棵树任你自己决定),边种边数:种了几棵,把圆分成了几段?

  2)、学生以小组为单位操作;

  3)、交流:你们小组种了几棵,把圆分成了几段?

  4)、初步概括:你们发现了什么规律?(在圆形路线上植树,棵数=段数)

  2、是不是每种封闭路线上的植树规律都是这样的呢?我们还要进一步研究。

  1)、出示长方形空地题目

  我们学校5号楼的东面有一块长方形空地,要在它的四周种树,每边种3棵,四个角上可以种也可以不种,有几种种法?

  2)、四人小组讨论,并把种的方法在练习纸的长方形上表示出来(建议:公共角上的树用圆点表示,其他的用长点表示);

  教师巡视指导;

  3)、学生交流:说说你们小组是怎么种的?种了几棵?把长方形分成了几段?

  得出:种植路线是长方形的,种植棵数与种植段数是相等的。

  4)、出示教科书第120页的例3,让学生先独立思考,再讨论解决。

  5)、展示不同的解决问题的方法,集体讨论判断正误

  3、研究在其他封闭图形上种树:

  A、你还想在什么封闭路线上种树?(指名回答)

  B、学生在泡沫塑料板的各种封闭图形上种树,边种边数:种了几棵?分成了几段?

  C、小组交流。

  4、得出规律:在封闭路线上植树:棵数=段数(板书)

  5、联系:它和非封闭路线上的哪种情况相同?

  (告诉学生事物就是这样相互联系的!

  6、质疑问难:大家还有什么疑问吗?

  如果在不规则的封闭路线上植树,棵数和段数是否相同?

  三、尝试练习:

  练习第121页的做一做上的习题

  学生尝试练习,交流,指名板书解题方法。

  四、课堂小结。

  这节课你最大的收获是什么?

  第三课时课题:围棋中的数学问题

  教学内容:人教版教科书四年级下册数学广角第120页例3及部分练习。

  教学目标:

  1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;

  2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;

  3.让学生感受数学在日常生活中的广泛应用。

  教学重点:从封闭曲线(方阵)中探讨植树问题。

  教学难点:用数学的方法解决实际生活中的简单问题。

  情感与态度目标:通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。

  教具准备:33格、44格、55格方格纸、围棋子若干粒、44格条形吹塑纸贴在地下。

  课前准备:课桌围成回字形。

  教学过程:

  一、情境导入(课件出示)

  猜谜:十九乘十九,

  黑白两对手,

  有眼看不见,

  无眼难活久。(打一棋类名称)

  [设计意图:用谜语引入,从学生的已有经验出发,激发学生的学习兴趣。培养学生良好的兴趣爱好。]

  二、探索新知

  1.教学每边摆放3粒棋子的方法。

  (1)课件出示围棋格子图,最外层每边能放3个棋子。最外层可以摆放多少个棋子?

  (2)抢答:读题后,让学生口算出答案。(学生可能会出现多种答案。)

  (3)动手验证:请学生分小组按要求摆放棋子,验证刚才答案。

  (4)汇报交流(着重请学生说出方法。)

  可能会出现以下方法:

  32+2=824=8

  33-1=834-4=8直接点数。

  教师表扬学生的`创新摆法,并奖励智慧星。(教师随学生回答,用课件出示摆放方法。)

  2.教学每边摆放4粒棋子的方法。

  (1)课件出示围棋格子图,最外层每边能放4个棋子。最外层可以摆放多少棋子?

  (2)动手操作:请学生分小组按要求摆放棋子,写出算式。

  (3)游戏:让一学生当小老师,其余学生当围棋子,请小老师邀请围棋子按上题要求站在老师设计的大棋盘上。

  [设计意图:这一游戏的方法,激发了学生的兴趣,不仅使学生学到了摆放方法,让每个学生参与活动,把所学知识运动到游戏中。]

  (4)汇报交流(着重请学生说出方法)

  教师随学生回答,用课件出示摆放方法。

  (5)你们最喜欢哪种方法?为什么?

  3.教学每边摆放5粒棋子的方法。

  (1)课件出示围棋格子图,最外层每边能放5个棋子。最外层可以摆放多少棋子?

  (2)动手操作:请学生分小组按要求摆放棋子,写出算式。

  (3)汇报交流。(教师随学生回答,用课件出示摆放方法。)

  (4)你们最喜欢哪种方法?和同桌说一说。

  [设计意图:让每位学生都参与活动,通过抢答、验证、分析、交流等一系列活动,借助围棋盘探讨封闭曲线(方阵)中的植树问题,进一步体会数学在日常生活中的广泛应用,学生在亲身经历的过程中实现知识能力乃至生命的同步发展。]

  三、总结规律

  (1)师:你觉得再用棋子摆,方便吗?你能根据前面我们摆放的方法,填写下列表格,总结出规律吗?(小组合作完成)

  每边放的个数最外层总数

  3

  4

  5

  6

  18

  你发现了什么规律:_____________________________________

  (2)教学例3:出示围棋格子图。问:围棋盘的最外层每边都能放19个棋子,最外层一共可以摆放多少个棋子?

  (2)总结规律::教师随着学生的回答板书:

  间隔数边数=最外层的总数

  (3)学生根据规律,独立完成例3。

  三、运用规律

  1.如果最外层每边能放100个,最外层一共可以摆放多少个棋子?

  如果最外层每边能放200个,最外层一共可以摆放多少个棋子?

  如果最外层每边能放300个,最外层一共可以摆放多少个棋子?

  拓展思维:如果一个五边形,怎么算?一个三角形呢?(集体口答)

  2.做第121页第三题

【数学《植树问题》教学设计】相关文章:

植树问题教学设计04-15

《植树问题》教学设计10-14

植树问题教学设计(精选18篇)03-06

《植树问题》教学设计(通用15篇)03-28

《植树问题》教学设计与反思(精选13篇)07-18

《植树问题》教学设计(通用20篇)08-12

《工程问题》数学教案教学设计10-17

数学试题植树问题03-28

四年级数学《植树问题》教学设计(精选13篇)08-31