教学设计

高中数学教学设计

时间:2022-12-06 09:12:52 教学设计 我要投稿

高中数学教学设计

  作为一无名无私奉献的教育工作者,时常需要准备好教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那么写教学设计需要注意哪些问题呢?下面是小编精心整理的高中数学教学设计,欢迎阅读,希望大家能够喜欢。

高中数学教学设计

高中数学教学设计1

  函数的奇偶性

  函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性.

  教学目标:

  1.通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力.

  2.理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.

  3.在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的任务分析

  这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果.

  一、问题情景

  1.观察如下两图,思考并讨论以下问题:

  (1)这两个函数图像有什么共同特征?

  (2)相应的两个函数值对应表是如何体现这些特征的?可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.

  对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数.

  2.观察函数f(x)=x和f(x)=的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.

  22可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.

  二、建立模型

  由上面的分析讨论引导学生建立奇函数、偶函数的定义

  1.奇、偶函数的定义

  如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数.

  2.提出问题,组织学生讨论

  (1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗? (f(x)不一定是偶函数)

  (2)奇、偶函数的图像有什么特征?

  (奇、偶函数的图像分别关于原点、y轴对称) (3)奇、偶函数的'定义域有什么特征? (奇、偶函数的定义域关于原点对称)

  三、解释应用[例题]

  1.判断下列函数的奇偶性.

  注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1].

  2.已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.

  解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),

  而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x).

  (2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

  3.已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论.

  解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:

  任取x1>x2>0,则-x1<-x2<0.

  ∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2).又f(x)是偶函数,∴f(x1)>f(x2).

  ∴f(x)在(0,+∞)上是增函数.

  思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?

  [练习]

  1.已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何.

  2. f(x)=-x3|x|的大致图像可能是()

  3.函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数. 4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

  四、拓展延伸

  1.有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.

  3.已知a∈R,f(x)=a-,试确定a的值,使f(x)是奇函数.

  4.一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?

高中数学教学设计2

  函数的奇偶性是函数的重要性质,是对函数概念的深化。它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称。这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析。

  教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义。然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例。最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系。这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性。

  教学目标

  1、通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力。

  2、理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性。

  3、在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的。

  任务分析

  这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数 ,k≠0,二次函数y=ax,a≠0,故可在此基础上,引入奇、偶函数的概念,以便于学生理解。在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔。

  对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=fx,一定有f0=0既是奇函数,又是偶函数的函数有fx=0,x∈R在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数。关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果。

  教学设计

  一、问题情景

  1、观察如下两图,思考并讨论以下问题:

  (1)这两个函数图像有什么共同特征?

  (2)相应的两个函数值对应表是如何体现这些特征的?

  可以看到两个函数的图像都关于y轴对称。

  从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同。

  对于函数fx=x,有f3=9=f3,f2=4=f2,f1=1=f1。事实上,对于R内任意的一个x,都有fx=x2=x2=fx。此时,称函数y=x2为偶函数。

  2、观察函数fx=x和fx= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征。

  可以看到两个函数的`图像都关于原点对称。函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值fx也是一对相反数,即对任一x∈R都有fx=fx。此时,称函数y=fx为奇函数。

  二、建立模型

  由上面的分析讨论引导学生建立奇函数、偶函数的定义

  1奇、偶函数的定义

  如果对于函数fx的定义域内任意一个x,都有fx=fx,那么函数fx就叫作奇函数。如果对于函数fx的定义域内任意一个x,都有fx=fx,那么函数fx就叫作偶函数。

  2、提出问题,组织学生讨论

  (1)如果定义在R上的函数fx满足f2=f2,那么fx是偶函数吗? fx不一定是偶函数

  (2)奇、偶函数的图像有什么特征?

  (奇、偶函数的图像分别关于原点、y轴对称)

  3奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)

  三、解释应用

  [例 题]

  1、判断下列函数的奇偶性。

  注:①规范解题格式;

  ②对于5要注意定义域x∈1,1]。

  2、已知:定义在R上的函数fx是奇函数,当x>0时,fx=x1+x,求fx的表达式。

  解:1任取x<0,则x>0,∴fx=x1x,

  而fx是奇函数,∴fx=fx。∴fx=x1x。

  (2)当x=0时,f0=f0,∴f0=f0,故f0=0

  3、已知:函数f(x是偶函数,且在∞,0上是减函数,判断fx在0,+∞)上是增函数,还是减函数,并证明你的结论。

  解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x在0,+∞)上是增函数,

  证明如下:

  任取x1>x2>0,则x1

  ∵fx在∞,0上是减函数,∴fx1>fx2。 又fx是偶函数,∴fx1>fx2。

  ∴f(x在0,+∞)上是增函数。

  思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?

  [练 习]

  1、已知:函数fx是奇函数,在[a,b]上是增函数b>a>0,问fx在[b,a]上的单调性如何。

  2fx=x3|x|的大致图像可能是

  3、函数fx=ax2+bx+c,a,b,c∈R,当a,b,c满足什么条件时,1函数fx是偶函数。2函数fx是奇函数。 4设fx,gx分别是R上的奇函数和偶函数,并且fx+gx=xx+1,求fx,gx的解析式。

  四、拓展延伸

  1、有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2设fx,gx分别是R上的奇函数,偶函数,试研究: 1Fx=fx·gx的奇偶性。 2Gx=|fx|+gx的奇偶性。

  3、已知a∈R,fx=a ,试确定a的值,使fx是奇函数。

  4、一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?

高中数学教学设计3

  教学准备

  教学目标

  1、掌握平面向量的数量积及其几何意义;

  2、掌握平面向量数量积的重要性质及运算律;

  3、了解用平面向量的数量积可以处理垂直的问题;

  4、掌握向量垂直的条件。

  教学重难点

  教学重点:平面向量的.数量积定义

  教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

  教学过程

  1、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,

  则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。

  并规定0向量与任何向量的数量积为0。

  ×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?

  2、两个向量的数量积与实数乘向量的积有什么区别?

  (1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定。

  (2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分。符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替。

  (3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0。因为其中cosq有可能为0。

高中数学教学设计4

  教学目标

  (1)理解四种命题的概念;

  (2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;

  (3)理解一个命题的真假与其他三个命题真假间的关系;

  (4)初步掌握反证法的概念及反证法证题的基本步骤;

  (5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;

  (6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;

  (7)培养学生用反证法简单推理的技能,从而发展学生的思维能力.

  教学重点和难点

  重点:四种命题之间的关系;难点:反证法的运用.

  教学过程设计

  第一课时:四种命题

  一、导入新课

  【练习】1.把下列命题改写成“若p则q”的形式:

  (l)同位角相等,两直线平行;

  (2)正方形的四条边相等.

  2.什么叫互逆命题?上述命题的逆命题是什么?

  将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论.

  如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题.

  上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”.

  值得指出的是原命题和逆命题是相对的.我们也可以把逆命题当成原命题,去求它的逆命题.

  3.原命题真,逆命题一定真吗?

  “同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

  学生活动:

  口答:

  (1)若同位角相等,则两直线平行;

  (2)若一个四边形是正方形,则它的四条边相等.

  设计意图:

  通过复习旧知识,打下学习否命题、逆否命题的'基础.

  二、新课

  【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?

  【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题.

  【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?

  学生活动:

  口答:若一个四边形不是正方形,则它的四条边不相等.

  教师活动:

  【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.把其中一个命题叫做原命题,另一个命题叫做原命题的否命题.

  若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定.

  【板书】原命题:若p则q;

  否命题:若┐p则q┐.

  【提问】原命题真,否命题一定真吗?举例说明?

  学生活动:

  讲论后回答:

  原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真.

  原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真.

  由此可以得原命题真,它的否命题不一定真.

  设计意图:

  通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性.

  教师活动:

  【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?

  学生活动:

  讨论后回答

  【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题.

  教师活动:

  【提问】原命题“正方形的四条边相等”的逆否命题是什么?

  学生活动:

  口答:若一个四边形的四条边不相等,则不是正方形.

  教师活动:

  【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题.

  原命题是“若p则q”,则逆否命题为“若┐q则┐p.

  【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

  学生活动:

  讨论后回答

  这两个逆否命题都真.

  原命题真,逆否命题也真.

  教师活动:

  【提问】原命题的真假与其他三种命题的真

  假有什么关系?举例加以说明?

  【总结】1.原命题为真,它的逆命题不一定为真.

  2.原命题为真,它的否命题不一定为真.

  3.原命题为真,它的逆否命题一定为真.

  设计意图:

  通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性.

  教师活动:

  三、课堂练习

  1.若原命题是“若p则q”,其它三种命题的形式怎样表示?请写在方框内?

  学生活动:笔答

  教师活动:

  2.根据上图所给出的箭头,写出箭头两头命题之间的关系?举例加以说明?

  学生活动:讨论后回答

  设计意图:

  通过学生自己填图,使学生掌握四种命题的形式和它们之间的关系.

  教师活动:

  略。

高中数学教学设计5

  一、教材分析

  数学归纳法是一种重要的数学证明方法,在高中数学内容中占有重要的地位,其中体现的数学思想方法对学生进一步学习数学、领悟数学思想至关重要。本课是数学归纳法的第一节课,前面学生对等差数列、数列求和、二项式定理等知识有较全面的把握和较深入的理解,初步掌握了由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法,这是研究数学问题,猜想或发现数学规律的重要手段。但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为一种论证方法。因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法——数学归纳法,这是促进学生从有限思维发展到无限思维的一个重要环节,同时本节内容又是培养学生严密的推理能力、训练学生的抽象思维能力、体验数学内在美的好素材。

  二、教学目标

  学生通过数列等相关知识的学习,已经基本掌握了不完全归纳法,已经由一定的观察、归纳、猜想能力。

  根据教学内容特点和教学大纲,结合学生实际而制定以下教学目标:

  1.知识目标

  (1)了解由有限多个特殊事例得出的一般结论不一定正确。

  (2)初步理解数学归纳法原理。

  (3)能以递推思想为指导,理解数学归纳法证明数学命题的两个步骤一个结论。

  (4)会用数学归纳法证明与正整数相关的简单的恒等式。

  2.能力目标

  (1)通过对数学归纳法的学习,使学生初步掌握观察、归纳、猜想、分析能力和严密的逻辑推理能力。

  (2)在学习中培养学生大胆猜想,小心求证的辨证思维素质以及发现问题、提出问题的意识和数学交流的能力。

  3.情感目标

  (1)通过对数学归纳法原理的探究,亲历知识的构建过程,领悟其中所蕴含的数学思想和辨正唯物主义观点。

  (2)体验探索中挫折的艰辛和成功的快乐,感悟数学的内在美,激发学生学习热情,使学生喜欢数学。

  (3)学生通过置疑与探究,初步形成正确的数学观,创新意识和严谨的科学精神。

  三、教学重点与难点

  1.教学重点

  借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些与正整数有关的简单恒等式,特别要注意递推步骤中归纳假设的运用和恒等变换的运用。

  2.教学难点

  (1)如何理解数学归纳法证题的严密性和有效性。

  (2)递推步骤中如何利用归纳假设,即如何利用假设证明当时结论正确。

  四、教学方法

  本节课采用交往性教学方法,以学生及其发展为本,一切从学生出发。在教师组织启发下,通过创设问题情境,激发学习欲望。师生之间、学生之间共同探究多米诺骨牌倒下的原理,并类比多米诺骨牌倒下的原理,探究数学归纳法的原理、步骤;培养学生归纳、类比推理的能力,进而应用数学归纳法,证明一些与正整数n有关的简单数学命题;提高学生的应用能力,分析问题、解决问题的能力。既重视教师的组织引导,又强调学生的主体性、主动性、交流性和合作性。

  五、教学过程

  (一)创设情境,提出问题

  情境一:根据观察某学校第一个到校的女同学,第二个到校的也是女同学,第三个到校的还是女同学,于是得出:这所学校的学生全部是女同学。

  情境二:平面内三角形内角和是,四边形内角和是,五边形内角和是,于是得出:凸边形内角和是。

  情境三:数列的通项公式为,可以求得,,,,于是猜想出数列的通项公式为。

  结论:运用有限多个特殊事例得出的一般性结论,即不完全归纳法不一定正确。因此它不

  能作为一种论证的方法。

  提出问题:如何寻找一个科学有效的方法证明结论的正确性呢?我们本节课所要学习的数

  学归纳法就是解决这一问题的方法之一。

  (二)实验演示,探索解决问题的方法

  1.几何画板演示动画多米诺骨牌游戏,师生共同探讨:要让这些骨牌全部倒下,必

  须具备那些条件呢?(学生可以讨论,加以教师点拨)

  ①第一块骨牌必须倒下。

  ②两块连续的骨牌,当前一块倒下,后面一块必须倒下。

  (启发学生转换成数学符号语言:当第块倒下,则第块必须倒下)

  教师总结:数学归纳法的'原理就如同多米诺骨牌一样。

  2.学生类比多米诺骨牌原理,探究出证明有关正整数命题的方法,从而导出本课的重心:数学归纳法的原理及其证明的两个步骤。(给学生思考的时间,教师提问,学生回答,教师补充完善,对学生的回答给予肯定和鼓励)

  数学归纳法公理:(板书)

  (1)(递推基础)当取第一个值(例如等)结论正确;

  (2)(递推归纳)假设当时结论正确;(归纳假设)

  证明当时结论也正确。(归纳证明)

  那么,命题对于从开始的所有正整数都成立。

  教师总结:步骤(1)是数学归纳法的基础,步骤(2)建立了递推过程,两者缺一不

  可,这就是数学归纳法。

  (三)迁移应用,理解升华

  例1:用数学归纳法证明:等差数列中,为首项,为公差,则通项公式为.①

  选题意图:让学生注意:①数学归纳法是一种完全归纳的证明方法,它适用于与正整数有关的问题;

  ②两个步骤,一个结论缺一不可,否则结论不成立;

  ③在证明递推步骤时,必须使用归纳假设,必须进行恒等变换。

  此时学生心中已有一个初步的证明模式,教师应该规范板书,给学生提供一个示范。

  证明:(1)当时,等式左边,等式右边,等式①成立.

  (2)假设当时等式①成立,即有

  那么,当时,有所以当时等式①也成立。

  根据(1)和(2),可知对任何,等式①都成立。

  例2:用数学归纳法证明:当时

  选题意图:通过师生共同活动,使学生进一步熟悉数学归纳法证题的两个步骤和一个结论。

  例3:用数学归纳法证明:当时

  选题意图:①进一步让学生理解数学归纳法的严密性和合理性,从而从感性认识上升为理性认识;

  ②掌握从到时等式左边的变化情况,合理的进行添项、拆项、合并项等。

  (四)反馈练习,巩固提高

  课堂练习:用数学归纳法证明:当时

  (练习让学生独立完成,上黑板板演,要求书写工整,步骤完整,表述清楚,如果发现学

  生证明过程中的错误,教师及时纠正、剖析,同时对学生板演好的方面予以肯定和鼓励。)

  教师总结:利用数学归纳法证明和正整数相关的命题时,要注意以下三句话:递推基础不

  可少,归纳假设要用到,结论写明莫忘掉。

  (五)反思总结

  学生思考后,教师提问,让同学相互补充完善,教师最后总结,这一环节可以培养学

  生抽象、归纳、概括、总结的能力,同时教师也可以及时了解学生的掌握情况,以便弥补和及时调整下节课的教学方向。

  小结:(1)归纳法是一种由特殊到一般的推理方法,分完全归纳法和不完全归纳法两种,

  而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明;

  (2)数学归纳法作为一种证明方法,用于证明一些与正整数n有关数学命题,它的基本思想是递推思想,它的证明过程必须是两步,最后还有结论,缺一不可;

  (3)递推归纳时从到,必须用到归纳假设,并进行适当的恒等变换。

  (六)作业布置

  选修2-2习题2.3第1题第2题

高中数学教学设计6

  教学准备

  教学目标

  解三角形及应用举例

  教学重难点

  解三角形及应用举例

  教学过程

  一.基础知识精讲

  掌握三角形有关的定理

  利用正弦定理,可以解决以下两类问题:

  (1)已知两角和任一边,求其他两边和一角;

  (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:

  (1)已知三边,求三角;

  (2)已知两边和它们的夹角,求第三边和其他两角。

  掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.

  二.问题讨论

  思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.

  思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.

  例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的`东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。

  一. 小结:

  1.利用正弦定理,可以解决以下两类问题:

  (1)已知两角和任一边,求其他两边和一角;

  (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

  2.利用余弦定理,可以解决以下两类问题:

  (1)已知三边,求三角;

  (2)已知两边和它们的夹角,求第三边和其他两角。

  3.边角互化是解三角形问题常用的手段.

  三.作业:P80闯关训练

高中数学教学设计7

  一、单元教学内容

  (1)算法的基本概念

  (2)算法的基本结构:顺序、条件、循环结构

  (3)算法的基本语句:输入、输出、赋值、条件、循环语句

  二、单元教学内容分析

  算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力

  三、单元教学课时安排:

  1、算法的基本概念 3课时

  2、程序框图与算法的基本结构 5课时

  3、算法的基本语句 2课时

  四、单元教学目标分析

  1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义

  2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。

  3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。

  4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  五、单元教学重点与难点分析

  1、重点

  (1)理解算法的含义 (2)掌握算法的`基本结构 (3)会用算法语句解决简单的实际问题

  2、难点

  (1)程序框图 (2)变量与赋值 (3)循环结构 (4)算法设计

  六、单元总体教学方法

  本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

  七、单元展开方式与特点

  1、展开方式

  自然语言→程序框图→算法语句

  2、特点

  (1)螺旋上升 分层递进 (2)整合渗透 前呼后应 (3)三线合

  一 横向贯通 (4)弹性处理 多样选择

  八、单元教学过程分析

  1. 算法基本概念教学过程分析

  对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。

  2.算法的流程图教学过程分析

  对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。

  3. 基本算法语句教学过程分析

  经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,

  4. 通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  九、单元评价设想

  1.重视对学生数学学习过程的评价

  关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。

  2.正确评价学生的数学基础知识和基本技能

  关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法

高中数学教学设计8

  一、课题:

  人教版全日制普通高级中学教科书数学第一册(上)《2.7对数》

  二、指导思想与理论依据:

  《数学课程标准》指出:高中数学课程应讲清一些基本内容的实际背景和应用价值,开展“数学建模”的学习活动,把数学的应用自然地融合在平常的教学中。任何一个数学概念的引入,总有它的现实或数学理论发展的需要。都应强调它的现实背景、数学理论发展背景或数学发展历史上的背景,这样才能使教学内容显得自然和亲切,让学生感到知识的发展水到渠成而不是强加于人,从而有利于学生认识数学内容的实际背景和应用的价值。在教学设计时,既要关注学生在数学情感态度和科学价值观方面的发展,也要帮助学生理解和掌握数学基础知识和基本技能,发展能力。在课程实施中,应结合教学内容介绍一些对数学发展起重大作用的历史事件和人物,用以反映数学在人类社会进步、人类文化建设中的作用,同时反映社会发展对数学发展的促进作用。

  三、教材分析:

  本节内容主要学习对数的概念及其对数式与指数式的互化。它属于函数领域的知识。而对数的概念是对数函数部分教学中的核心概念之一,而函数的思想方法贯穿在高中数学教学的始终。通过对数的学习,可以解决数学中知道底数和幂值求指数的问题,以及对数函数的相关问题。

  四、学情分析:

  在ab=N(a>0,a≠1)中,知道底数和指数可以求幂值,那么知道底数和幂值如何求求指数,从学生认知的角度自然就产生了这样的需要。因此,在前面学习指数的基础上学习对数的概念是水到渠成的事。

  五、教学目标:

  (一)教学知识点:

  1.对数的概念。

  2.对数式与指数式的互化。

  (二)能力目标:

  1.理解对数的概念。

  2.能够进行对数式与指数式的互化。

  (三)德育渗透目标:

  1.认识事物之间的'相互联系与相互转化,

  2.用联系的观点看问题。

  六、教学重点与难点:

  重点是对数定义,难点是对数概念的理解。

  七、教学方法:

  讲练结合法八、教学流程:

  问题情景(复习引入)——实例分析、形成概念(导入新课)——深刻认识概念(对数式与指数式的互化)——变式分析、深化认识(对数的性质、对数恒等式,介绍自然对数及常用对数)——练习小结、形成反思(例题,小结)

  八、教学反思:

  对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,教材内容的处理收到了一定的预期效果,尤其是练习的处理,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。

  对于本教学设计,时间仓促,不足之处在所难免,期待与各位同仁交流。

高中数学教学设计9

  一、教学内容分析:

  本节教材选自人教a版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。

  二、学生学习情况分析:

  任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。

  三、设计思想

  本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。

  四、教学目标

  通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。

  五、教学重点与难点

  重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。

  六、教学过程设计

  (一)知识准备、新课引入

  提问1:根据公共点的情况,空间中直线a和平面?有哪几种位置关系?并完成下表:(多媒体幻灯片演示) a??

  提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。

  [设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。]

  (二)判定定理的探求过程

  1、直观感知

  提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?

  生1:例举日光灯与天花板,树立的电线杆与墙面。

  生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。

  [学情预设:此处的预设与生成应当是很自然的,但老师要预见到可能出现的情况如电线杆与墙面可能共面的情形及门要离开门框的位置等情形。]

  2、动手实践

  教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。

  [设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。]

  3、探究思考

  (1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:①平面外一条线②我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为平面内一条直线③这两条直线平行

  (2)如果平面外的直线a与平面?内的一条直线b平行,那么直线a与平面?平行吗?

  4、归纳确认:(多媒体幻灯片演示)

  直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。

  简单概括:(内外)线线平行?线面平行a符号表示:ba||? a||b??

  温馨提示:

  作用:判定或证明线面平行。

  关键:在平面内找(或作)出一条直线与面外的直线平行。

  思想:空间问题转化为平面问题

  (三)定理运用,问题探究(多媒体幻灯片演示)

  1、想一想:

  (1)判断下列命题的真假?说明理由:

  ①如果一条直线不在平面内,则这条直线就与平面平行()

  ②过直线外一点可以作无数个平面与这条直线平行( )

  ③一直线上有二个点到平面的距离相等,则这条直线与平面平行( )

  (2)若直线a与平面?内无数条直线平行,则a与?的位置关系是( ) a、a ||? b、a?? c、a ||?或a?? d、a?? [学情预设:设计这组问题目的是强调定理中三个条件的重要性,同时预设(1)中的③学生可能认为正确的,这样就无法达到老师的预设与生成的目的,这时教师要引导学生思考,让学生想象的空间更广阔些。此外教师可用预先准备好的羊毛针与泡沫板进行演示,让羊毛针穿过泡沫板以举不平行的.反例,如果有的学生空间想象力强,能按老师的要求生成正确的结果则就由个别学生进行演示。]

  2、作一作:

  设a、b是二异面直线,则过a、b外一点p且与a、b都平行的平面存在吗?若存在请画出平面,不存在说明理由?

  先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。

  [设计意图:这是一道动手操作的问题,不仅是为了拓展加深对定理的认识,更重要的是培养学生空间感与思维的严谨性。]

  3、证一证:

  例1(见课本60页例1):已知空间四边形abcd中,e、f分别是ab、ad的中点,求证:ef ||平面bcd。

  变式一:空间四边形abcd中,e、f、g、h分别是边ab、bc、cd、da中点,连结ef、fg、gh、he、ac、bd请分别找出图中满足线面平行位置关系的所有情况。(共6组线面平行)变式二:在变式一的图中如作pq?ef,使p点在线段ae上、q点在线段fc上,连结ph、qg,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形efgh、pqgh分别是怎样的四边形,说明理由。

  [设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。]例2:如图,在正方体abcd—a1b1c1d1中,e、f分别是棱bc与c1d1中点,求证:ef ||平面bdd1b1分析:根据判定定理必须在平

  面bdd1b1内找(作)一条线与ef平行,联想到中点问题找中点解决的方法,可以取bd或b1d1中点而证之。

  思路一:取bd中点g连d1g、eg,可证d1gef为平行四边形。

  思路二:取d1b1中点h连hb、hf,可证hfeb为平行四边形。

  [知识链接:根据空间问题平面化的思想,因此把找空间平行直线问题转化为找平行四边形或三角形中位线问题,这样就自然想到了找中点。平行问题找中点解决是个好途径好方法。这种思想方法是解决立几论证平行问题,培养逻辑思维能力的重要思想方法]

  4、练一练:

  练习1:见课本6页练习1、2

  练习2:将两个全等的正方形abcd和abef拼在一起,设m、n分别为ac、bf中点,求证:mn ||平面bce。

  变式:若将练习2中m、n改为ac、bf分点且am = fn,试问结论仍成立吗?试证之。

  [设计意图:设计这组练习,目的是为了巩固与深化定理的运用,特别是通过练习2及其变式的训练,让学生能在复杂的图形中去识图,去寻找分析问题、解决问题的途径与方法,以达到逐步培养空间感与逻辑思维能力。]

  (四)总结

  先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示):

  1、线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与这个平面平行。

  2、定理的符号表示:ba||? a||b??简述:(内外)线线平行则线面平行

  3、定理运用的关键是找(作)面内的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等。

  七、教学反思

  本节“直线与平面平行的判定”是学生学习空间位置关系的判定与性质的第一节课,也是学生开始学习立几演泽推理论述的思维方式方法,因此本节课学习对发展学生的空间观念和逻辑思维能力是非常重要的。

  本节课的设计遵循“直观感知——操作确认——思辩论证”的认识过程,注重引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。

  本节课的设计注重训练学生准确表达数学符号语言、文字语言及图形语言,加强各种语言的互译。比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。

  本节课对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包涵的数学现象与数学原理,体验数学即生活的道理,比如让学生举生活中能感知线面平行的例子,学生会举出日光灯与天花板,电线杆与墙面,转动的门等等,同时老师的举例也很贴进生活,如老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行。然后引导学生从中抽象概括出定理。

高中数学教学设计10

  前言

  为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在20xx年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。

  在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的文章则排在后面。

  不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程.书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪.你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!

  1、集合与函数概念实习作业

  一、教学内容分析

  《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。

  二、学生学习情况分析

  该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

  三、设计思想

  《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的`价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

  四、教学目标

  1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;

  2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;

  3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。

  五、教学重点和难点

  重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;

  难点:培养学生合作交流的能力以及收集和处理信息的能力。

  六、教学过程设计

  【课堂准备】

  1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。

  2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

高中数学教学设计11

  一、探究式教学模式概述

  1、探究式教学模式的含义。探究式教学就是学生在教师引导下,像科学家发现真理那样以类似科学探究的方式来展开学习活动,通过自己大脑的独立思考和探究,去弄清事物发展变化的起因和内在联系,从中探索出知识规律的教学模式。它的基本特征是教师不把跟教学内容有关的内容和认知策略直接告诉学生,而是创造一种适宜的认知和合作环境,让学生通过探究形成认知策略,从而对教学目标进行一种全方位的学习,实现学生从被动学习到主动学习,培养学生的科学探究能力、创新意识和科学精神。可见,探究式教学主张把学习知识的过程和探究知识的过程统一起来,充分发挥学生学习的自主性和参与性。

  2、堂探究式教学的实质。课堂探究式教学的实质是使学生通过类似科学家科学探究的过程来理解科学探究概念和科学规律的本质,并培养学生的科学探究能力。具体地说,它包括两个相互联系的方面:一是有一个以“学”为中心的探究性学习环境。在这个环境中有丰富的教学资源,而且这些资源是围绕某个知识主题来展开的。这个学习环境具有民主和谐的课堂气氛,它使学生很少感到有压力,能自主寻找所需要的信息,提出自己的设想,并以自己的方式检验其设想。二是教师可以给学生提供必要的帮助和指导,使学生在研究中能明确方向。这说明探究式教学的本质特征是不直接把与教学目标有关的概念和认知策略告诉学生,取而代之的是教师创造出一种智力交流和社会交往的环境,让学生通过探究自己发现规律。

  3、探究式教学模式的特征。

  (1)问题性。问题性是探究式教学模式的关键。能否提出对学生具有挑战性和吸引力的问题,使学生产生问题意识,是探究教学成功与否的关键所在。恰当的问题会激起学生强烈的学习愿望,并引发学生的求异思维和创造思维。现代教育心理学研究提出:“学生的学习过程和科学家的探索过程在本质上是一样的,都是一个发现问题、分析问题、解决问题的过程。”所以培养学生的问题意识是探究式教学的重要使命。

  (2)过程性。过程性是探究式教学模式的重点。爱因斯坦说:“结论总以完成的形式出现,读者体会不到探索和发现的喜悦,感觉不到思想形成的生动过程,也就很难达到清楚、全面理解的境界。”探究式教学模式正是考虑到这些人的认知特点来组织教学的,它强调学生探索知识的经历和获得新知识的亲身感悟。

  (3)开放性。开放性是探究式教学模式的难点。探究式教学模式总是综合合作学习、发现学习、自主学习等学习方式的长处,培养学生良好的学习态度和学习方法,提倡和发展多样化的学习方式。探究式教学模式要面对大量开放性的问题,教学资源和探究的结论面对生活、生产和科研是开放的,这一切都为教师的教与学生的学带来了机遇与挑战。

  二、教学设计案例

  1、教学内容:数字排列中3、9的探究式教学。

  2、教学目标。

  (1)知识与技能:掌握数字排列的`知识,能灵活运用所学知识。

  (2)过程与方法:在探究过程中掌握分析问题的方法和逻辑推理的方法。

  (3)情感态度与价值观:培养学生观察、分析、推理、归纳等综合能力,让学生体会到认识客观规律的一般过程。

  3、教学方法:谈话探究法,讨论探究法。

  4、教学过程。

  (1)创设情境。教师:在高中数学第十章的教学中,有关数字排列的问题占有重要位置。我们曾经做过的有关数字排列的题目,如“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除。那么能被3整除的数,能被9整除的数有何特点?

  (2)提出问题。

  问题1:在用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的共有()

  A、36个B、18个C、12个D、24个

  问题2:在用0、1、2、3、4、5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数?

  (3)探究思考。点评:乍一看问题1,对于由若干个数字排列成9的倍数的问题,如:81、72、63、54、45、36、27、18、9这些能够被9整除的数的个位数字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的数,不能只考虑个位数字了。于是,需另辟蹊径,探究能被9整除的数的特点,寻求解决问题的途径。

  教师:同学们观察81、72、63、54、45、36、27、18、9这些数,甚至再写出几个能被9整除的数,如981、1872等,看看它们有何特点?

  学生:它们都满足“各位数字之和能被9整除”。

  教师:此结论的正确性如何?

  学生:老师,我们证明此结论的正确性,好吗?

  教师:好。

  学生:证明:不妨以n是一个四位数为例证之。

  设n=1000a+100b+10c+d(a,b,c,d∈N)依条件,有a+b+c+d=9m(m∈N)

  则n=1000a+100b+10c+d

  =(999a+a)+(99b+b)+(9c+c)+d

  =(999a+99b+9c)+(a+b+c+d)

  =9(111a+11b+c)+9m

  =9(111a+11b+c+m)

  ∵ a,b,c,m∈N

  ∴ 111a+11b+c+m∈N

  所以n能被9整除

  同理可证定理的后半部分。

  教师:看来上述结论正确。所以得到如下定理。

  定理:如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。

  教师:利用该定理可解决“能被3、9整除”的数字排列问题,请同学们先解答问题1。

  学生:尝试1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。

  教师:启发学生观察这些数字有何特点?提问学生。

  学生:可以看出只要从1、2、3、4、5、6这六个数中,选取的四个数字中含1(或2),或者同时含1、2,选取的四个数字之和都不是9的倍数。

  教师:请学生们继续尝试选取其他数字试一试。

  学生:3+4+5+6=18是9的倍数。

  教师:因此用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的数,就是由3、4、5、6进行全排列所得,共有=24(个)。

  故应选D。

  (4)学以致用。

  问题2:在用0、1、2、3、4、5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数?

  教师:从上面的定理知:如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。同学们对问题2有何想法?

  学生讨论:

  学生1:被6整除的五位数必须既能被2整除,又能被3整除,故能被6整除的五位数,即为各位数字之和能被3整除的五位偶数。

  学生2:由于1+2+3+4+5=15,能被3整除,所以选取的5个数字可分两类:一类是5个数字中无0,另一类是5个数字中有0(但不含3)。

  学生3:第一类:5个数字中无0的五位偶数有。

  第二类:5个数字中含有0不含3的五位偶数有两类,第一,0在个位有个;第二,个位是2或4有,所以共有+ 。

  学生4:由分类计数原理得:能被6整除的无重复数字的五位数共有+ + =108(个)。

  (5)概括强化。

  重点:了解数字排列问题的特点,理解掌握数字排列中3、9问题的规律。

  难点:数字排列知识的灵活应用。

  关键:证明的思路以及定理的得出。

  新学知识与已知知识之间的区别和联系:已知知识“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除”。新学知识“如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。都是数字排列知识,要学会灵活应用。

  (6)作业。请同学们自拟练习题,以求达到熟练解决此类问题的目的。

  总之,探究式教学模式是针对传统教学的种种弊端提出来的,新课程改革强调改变课程过于注重知识的传授和过于强调接受式学习的状况,倡导学生主动参与乐于探究、勤于动手,让学生经历科学探究过程,学习科学研究方法,并强调获得知识、技能的过程成为学会学习和形成价值观的过程,以培养学生的探究精神、创新意识和实践能力。

高中数学教学设计12

  一.教材分析。

  ( 1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学

  ( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思

  想方法,都是学生今后学习和工作中必备的数学素养。

  (2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫

  二.学情分析。

  ( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。

  ( 2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。

  (3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

  三.教学目标。

  根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的.推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。

  (2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.

  (3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。

  四.重点,难点分析。

  教学重点:公式的推导、公式的特点和公式的运用。

  教学难点:公式的推导方法及公式应用中q与1的关系。

  五.教法与学法分析.

  培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而

  获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。

  六.课堂设计

  (一)创设情境,提出问题。(时间设定:3分钟)

  [利用投影展示]在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?

  [设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点]

  提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?

高中数学教学设计13

  我先来介绍一下参加我们这次讲座的几位嘉宾,我身边这位是苏州五中的罗强校长,这边这位是苏州中学的刘华老师,那边那位是大家熟悉的首都师范大学数学系博士生导师王尚志教授。欢迎大家来到我们研讨的现场!

  老师们都知道,素质教育要落实在课堂上,课堂是我们实行数学新课程的主战场,做好教学设计是我们整个高中数学新课程推进的一个关键点。那么,怎样才能做好数学的教学设计呢?我们问过一些老师,大家感觉有些疑惑,比如说有的老师们认为:教学设计是不是就是备备课,写好一个教案、做一个课件,是不是这样?我们想听听来自江苏的老师怎么看这个问题?

  罗强:我来谈谈自己对教学设计理论的学习和实践过程中的一些体会。以前我们在教学实践中往往把教学设计变成一种简单的教案设计,但实际上这只是一种经验型的教学设计,没有上升为科学型的教学设计。其实,国际上对教学设计的研究已经进行多年,提出了许多思想、理论、案例,教学设计已经成为一个独立的研究领域。

  教学设计理论的发展基本上经历了两个阶段:第一个阶段是突出以“教的传递策略”为中心来进行教学设计的传统教学设计理论,它更接近工程学,遵循设计的规则和程序,强调目标递进和按部就班的系统操作过程,其特点是注重目标细化,注重分层要求,注重教学内容各要素的协调。就好像我们要造一幢房子,先要把这幢房子的图纸设计出来,然后再设计一个施工的蓝图,教学就是按照这样的设计来进行实施的一个过程。

  第二个阶段是突出以“学的组织方式”为中心来进行教学设计的现代教学设计理论,它的基础是信息加工理论与建构主义的学习理论,现代教学设计理论强调依据学习任务类型(如认知、情感与心理动作等)来选择教学策略,强调以问题为中心,营造一个能激活学生原有知识经验,有利于新知识建构的学习环境。其特点是问题与环境,强调创设情境,提出问题,营造问题解决的环境,突出学生的自主学习和自主探究。

  按照新的教学设计的理论,我们应该以学为中心来进行教学设计,简单的说就是——为学习而设计教学!打个比喻,就是说我们教师好比是导游,带着学生去一个新的景点旅游,那么在这个过程中间,教学设计就是设计这么一个导游图,让学生在参观各个景点的过程中,经历学习这些知识的一种过程。

  按照为学习而设计教学的理念,我觉得在教学设计时要考虑三条线索,这样实际上也就构成了教学设计的一种三维结构。第一条线索就是一种数学知识线索。因为教师进行的是学科教学;第二个线索是学生的认知线索。因为学习的主体是学生;第三个线索就是教师的教学组织线索,因为教学过程是通过教师的组织来实现的。比如第一条线索——数学知识,我觉得数学知识实际有三个形态:一是自然形态,它既存在于客观世界中间,实际上也存在于学生的头脑中间;二是学术形态,它是作为数学学科的一种知识体系而存在。那么,我们的教学就是要在数学的自然形态和学术形态的中间架一座桥梁,这座桥梁就是数学的教育形态。因此,我觉得教学设计的本质就是设计好数学的教育形态,教学设计的过程实际上就是构建数学教育形态的一个过程。

  通过对教学设计理论的学习,并在实践中反思和总结,我的体会很深。有一位美国学者兰达曾经说过:教学设计是使天才能够做到的事一般人也能去做。我想对教学设计理论的学习是一个大家都要努力的目标。

  张思明:刚才罗强老师从理论上分析了什么是教学设计?教学设计应该关注哪些问题?下面我们请刘华老师帮我们分析一下:在你们实验区和老师接触的实践中,你感觉到老师们在教学设计中存在着哪些主要问题?

  刘华:我想解剖一个由职初教师,就是刚刚工作的青年教师所提供的一个教学案例。

  我先简单介绍一下他的教学设计。这是高一函数单调性的一节起始课,在教学设计中,这个职初教师首先明确了这节课的三维目标,然后他提出了两个生活中的情境,一个情境是生活中的气温图;第二个情境是股票的价格走势图,然后引入新课。接着把函数单调性的概念介绍给学生,紧接着进入了例题讲解阶段,最后是有两个思考题。

  我觉得这个教学设计大致存在这样四点比较普遍的问题:

  第一个问题就是这位教师在确定课程目标的时候,比较机械地套用了新课程的理念,按照“知识技能,方法与过程,情感、态度、价值观”这样的三维目标来叙述他的本节课目标。在这些目标中,知识与技能的目标还是比较实在的,但“过程与方法”的目标以及“情感、态度、价值观”的目标就比较空洞,流于形式。其实,这位老师对教学目标并没有做深入的分析,这样的教学目标只是一个标签而已,这是第一个问题。

  第二个问题是问题情境的设计。好的情境应当是兼顾生活化与数学化,股票的价格走势图这个情境离学生的生活太远,其中还包含了许多股票方面的专门知识,对函数单调性这个数学概念的反映也不够准确,作为本课的情境,不太恰当。

  第三个问题就是在情境到数学概念的产生过程中,应当让学生充分体验或参与数学化的探索过程,从而建构起函数单调性这一概念。我们看到在这位教师的设计当中,他忽略了学生活动,尤其是学生思维活动这样一个环节,而是直接把概念抛给了学生。我们认为学生在数学学习中,“过程”相对来说比仅仅接受概念这个“结果”更为重要。

  最后一个问题就是我们发现有很多老师认为数学教学设计主要就是习题的设计,这位教师本节课的例题、习题量非常多,而且对这些习题的要求他存在着一步到位的倾向,尤其是他最后抛出来的含字母的函数单调性的探索这个问题,我们觉得在新授课当中这个习题的要求太高了。我觉得老师们在教学设计中主要存在这样几点问题。

  张思明:刘华老师谈了一个单调性的案例,对一个新教师的案例做了一个分析,分析出了我们老师在教学设计中常常出现的一些问题。那么面对这样一些问题,我们应该怎么办?我们就以这个案例为出发点,请罗强老师对函数单调性这个课题做了一个分析和再创造的工作,在这个工作中我们可以看到如何通过教师自己的再学习、再认识,设计出一个更好、更适用于学生的教学设计。我们来看一下罗强老师的说课录像。

  罗强老师的说课:各位老师大家好,我向大家汇报一下我对函数单调性的教学设计。

  首先谈一下我对教学设计的认识。我觉得教学设计的根本目的是创设一个有效的教学系统,这样的教学系统不是随意出现的而是教师精心创设的,没有有效的教学设计就不可能保证教学的效果和质量。教学设计最根本的着力点是“为学习设计教学”,而不是“为教学设计学习”。

  教学设计的首要任务就是明确教学目标,实际上教学目标是教学设计的灵魂和统帅,将指引后续教学设计的方向,决定后续教学设计的具体工作。在制定教学目标的时候,我觉得要把握以下几点:

  第一,把握教学要求,不求一步到位。函数单调性是高中阶段刻划函数变化的一个最基本的性质。在高中数学课程中,对于函数单调性的研究分成两个阶段:第一个阶段是用运算的性质研究单调性,知道它的变化趋势;第二阶段用导数的性质研究单调性,知道它的变化快慢。那么高一我们是处在第一个阶段。第二,明确知识目标,落实隐性目标。知识目标往往就是教学的显性目标,确定知识目标的关键在于分清主次轻重,把握好教学要求。根据课程标准的要求,本节课的知识目标定位在以下三个方面:一是理解函数单调性的概念;二是掌握判断函数单调性的方法;三是会用定义证明一些简单函数在某个区间上的单调性。另外这节课的隐性目标我觉得也很重要,因为函数单调性的定义是对函数图象特征的一种数学描述,它经历了由图象直观特征到自然语言描述再到数学符号的描述的进化过程,反映了数学的理性思维和理性精神。对高一学生来讲它是一个很有价值的数学教育载体和契机。因此这节课的隐性目标应该包括让学生体验数学知识的发生发展过程,学会数学概念符号化的建构过程。根据刚才的分析,我把教学流程分成了三个阶段:第一个阶段是进行函数单调性概念的数学化过程;第二个阶段是从不同的角度帮助学生深入理解函数单调性的概念;第三个阶段是让学生学会判断,并用函数单调性的定义证明函数的单调性。

  第一阶段的教学流程分成三个教学环节。第一,问题情境;第二,温故知新;第三,建构概念。具体如下:

  先是创设问题情境。由老师和学生一起举出生活中描绘上升或者下降的变化规律的成语。老师可以启发一下,先说一个“蒸蒸日上”,然后和学生一起举出比如“每况愈下”,“波澜起伏”这样三种描绘不同变化的成语。然后请学生根据上述成语,给出一个函数,并在平面直角坐标系中绘制相应的函数图象。这样设计的意图是让学生结合生活体验用朴素的生活语言描绘变化规律,体会如何将文字语言转化为图形语言。

  接下来是温故知新。在刚才学生绘制出的三个函数图象的基础上,我请学生观察它们变化的趋势。在刚才学生绘制的三个函数图象的基础上,再请学生用初中的语言来叙述什么叫图象呈逐渐上升的趋势,也就是“函数值随着的增大而增大”。这样设计的意图是让学生对照绘制的函数图象,用自然语言描述函数的变化规律,重温初中函数单调性的描述定义。

  张思明:刚才我们看到了时骏老师的说课,下面我们来听一听嘉宾对这个说课的分析。

  罗强:我还是要强调教学设计一定要注意为学习而设计教学。还是拿我刚才的这个比喻,就是教师带学生去旅游。既然是带学生去旅游,首先就要考虑我要带学生到什么地方去?然后需要考虑我怎么才能够带学生到达这个地方?然后我要确定学生是不是真的到达了这个地方?还要注意的是,作为教学的一种延伸,我觉得还应该让学生有兴趣、有能力继续他自己的旅程。我觉得这是我们教学设计要做的主要工作。

  张思明:通过以上几个案例,我想老师们对于如何做教学设计有了一个初步的认识。怎样做好教学设计呢?我们也想听一听在教育指导部门的老师的一些想法,我们特别采访了江苏省教研室的董林伟主任,我们来听一听董主任关于教学设计的思考和认识。

  董主任:关于设计这两个词大家应该都非常的熟悉。当人们要从事一项有目的的活动的时候,事先都要有一些设想,要进行一些规划,要进行一些设计。作为我们教学工作者来说,在开始我们的教学活动之前,我们的老师都必须做一项非常重要的工作,那就是教学设计。今天我要谈的就是关于教学设计的话题。我想就三个方面来谈谈我的一些基本想法。第一,我想先谈谈什么叫教学设计?第二,谈谈我们在教学设计过程中应该来设计一些什么?第三,在设计的过程当中我们要注意哪几点?下面我想简要的把这三个方面跟大家做一个交流。

  一、关于什么叫教学设计?

  所谓的教学设计就是用系统的方法对各种课程资源进行有机的整合,对教学过程中相互联系的各个部分作出整体安排的一种构想。它是一种构想,是一种整体的安排,是我们教师为将来进行的教学勾画的一些图景,它反映了我们的教师对自己未来教学的一种认识和期望。如果通俗一点来说,那么所谓的教学设计可以这样来理解,就是:你要把学生带到哪里去?你怎样把学生带到那里去?你这样做能把学生带到那里去吗?

  二、在教学设计过程当中我们应该关注些什么,就是说设计一些什么?

  首先,我们必须明确我们的教学目标,教学目标是我们教学根本的指向与核心的任务,是教学设计的关键。教学的目标是教学中师生所预期达到的一种教学效果和标准,因此,明确教学目标就是要明确你要把学生带到哪里去。在确定教学目标的时候,我们要关注以下的几点:第一,整体性。就是要注意这部分内容在整个高中阶段数学教学中的联系,以达到教学的一种连贯性,要正确处理好我们的近期的目标跟远期目标的相互关系。第二,在我们明确目标的时候,要关注它的全面性。新课程对数学教学的目标提出了新的一种要求,三维目标在关注知识结果的同时,更注重对过程目标的关注和对学习者——学生的关注,更关注学生获取数学知识的过程以及在学习中的经历、感受和体验。因此,教师在设计数学教学目标时,应特别注意关注新课程所提出的过程性目标。第三,我们要关注目标的现实性。确定教学目标时,应当注意它与所授课任务的实质性联系,以避免目标空洞、无法落实。我们在设计教学目标时,常见的一种状况是目标过分的大,过分的空洞,那么在落实过程中,就难以达到预设的目标。其次,我们在教学设计中要非常关注学生,要了解学生。我想,以下几个方面,至少老师在教学设计过程中应该心中有数。

  第一,在数学方面学生以前做过什么?他在数学活动或者是在数学实验方面,曾经做过什么?这里我们实际上要关注的是学生的活动经验。

  第二,不同的学生在思维方式上会有什么不同。实际上就是要在教学中关注我所授课的学生的特点,关注我班学生的构成,班级当中不同群体的学生在思维方面有些什么样的不同。

  第三,要初步确定课堂的组织形式,就是说我这一堂课是整个班级一起学习,还是将学生分成若干个组来活动,甚至于是一种个体性的活动,包括开展一些个体性的实验活动,包括自主学习的一种活动方式。组织形式上还要关注这堂课需要利用什么模型?是否需要做适当的课件?或者准备一些相关的硬件设施。这也是我们在确定课堂组织形式是所必须要关注的。

  第四,要勾勒教学的一种顺序。这个顺序当中主要包括这样几点:

  第一点,应当怎样提出主题,通俗一点讲就是问题情境的创设。关于问题情境的创设,我们在相关的专题中也都提到它的'重要性和一些要求。我们在勾勒教学顺序的时候,首先要关注的是怎样提出主题,这个主题应该是跟学生接近的,又要能够引起他的兴趣,又要围绕着我们的教学主题的,而且能够使得学生迅速的进入学习活动中。

  第二点,就是要关注是否需要复习以前的相关知识。一堂课的教学它往往不是独立的,而是有前后联系的,因此需要考虑我在这堂课教学中是否需要复习相关的知识?

  第三点,当学生对材料产生争论的时候,你准备提出怎样的探索性问题。当我们提出问题以后学生可能会产生什么样的一种思考,可能会产生一种什么样的争论?我们要了解这些争论的思维的背景,需要进行正确的引导,那么你就必须要设计好一些问题串,来引导学生围绕主题展开探索。

  第四点,我们在设计教学程序的过程中要关注一下我们使用的材料,我们的课本提出了什么样的观点,使用什么样课外的材料来帮助我们的教学。

  第五点,要根据学生对主题的掌握程度,准备几个可以供选择的,课堂当中要自主完成的练习,或者是课后要完成家庭作业。这些是勾勒我们整个教学流程的一些关键程序。

  三、教学设计中我们应该注意的方面。

  教学设计永远只是教学过程的一种预期,实际的教学活动则永远是一个谜。我们老师都有经验,同样的一个课题,同一个老师的备课,他在不同班的授课过程中都会产生不同的教学流程、教学效果。因为我们所面对的学生是不同的,是在变化的,我们的教学生成是变化的,只有当这堂课教学完成了,我们才能知道这堂课最后的结果。所以前面的教学设计只是一种预期,我们的教学设计就是要关注这样的一种变化。

  因此,教学设计首先要注意它的整体性,就是说我们的教学设计不是一种片断,是一种整体的设计,它不是写在我们纸上的一种文本,而是我们教师对自己和学生所持的一种整体性的目标。其次,要注意它的可变性,没有一件事情是丝毫不差地按照计划进行的。学生的思维可能还停留在你认为根本不重要的问题上,他们还会以你几乎不能想象的方式来理解某些概念。当活动过程受到影响时,你必须放弃你原来的教学计划,运用你对学生已有的知识的了解和更宏观的数学教学目标,去指导你的教学行动,也就是说要产生一些生成的问题。第三,要注意它创造性。我们的教师很大程度上会依赖于教材或教学参考书,以确保他们的数学教学内容符合一个内部连贯的发展框架。这种依赖有一定的好处,它能够使得我们的教学设计能够围绕着我们课程的设计来进行,但是同时也存在一些问题,就是说毕竟教材是我们课程的一种呈现,跟教学的呈现还是有着本质差别的。我们的教学设计应该是一种流动的过程,应该适合我们的学生,就像设计师设计的服装要符合你所设计的群体的特点和要求,如果考虑到个体,就要符合他的气质,符合他的整体形象。我们的教学设计也是这样,我想每个人都应该有个人设计的一种思考和魅力。

  刚才谈到这几点仅供我们老师做一种参考。

  张思明:各位老师,我们这一讲把教学设计中存在的问题通过几个案例给大家做了一个初步的展示。我想教学设计中的问题是一个教学实践过程中产生的问题,我们每一个老师都有自己的设计理念,都有自己设计成功或者不如意甚至失败的地方。我们希望研讨是一个互动的过程,我们真诚的期待着老师们把您们在教学设计中遇到的问题和成功的经验寄给我们,我们一起来研讨。那么这一讲就到这里,谢谢老师们的参与!

高中数学教学设计14

  一、教学目标

  1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。

  2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。

  3、通过对四种命题之间关系的学习,培养学生逻辑推理能力

  4、初步培养学生反证法的数学思维。

  二、教学分析

  重点:四种命题;难点:四种命题的关系

  1、本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。

  2、教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,

  3、“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。

  三、教学手段和方法(演示教学法和循序渐进导入法)

  1、以故事形式入题

  2、多媒体演示

  四、教学过程

  (一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!

  设计意图:创设情景,激发学生学习兴趣

  (二)复习提问:

  1.命题“同位角相等,两直线平行”的条件与结论各是什么?

  2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?

  3.原命题真,逆命题一定真吗?

  “同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

  学生活动:

  口答:

  (1)若同位角相等,则两直线平行;

  (2)若一个四边形是正方形,则它的四条边相等.

  设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础.

  (三)新课讲解:

  1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。

  2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。

  3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。

  (四)组织讨论:

  让学生归纳什么是否命题,什么是逆否命题。

  例1及例2

  (五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

  学生活动:

  讨论后回答

  这两个逆否命题都真.

  原命题真,逆否命题也真

  引导学生讨论原命题的.真假与其他三种命题的真

  假有什么关系?举例加以说明,同学们踊跃发言。

  (六)课堂小结:

  1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的形式就是:

  原命题若p则q;

  逆命题若q则p;(交换原命题的条件和结论)

  否命题,若¬p则¬q;(同时否定原命题的条件和结论)

  逆否命题若¬q则¬p。(交换原命题的条件和结论,并且同时否定)

  2、四种命题的关系

  (1).原命题为真,它的逆命题不一定为真.

  (2).原命题为真,它的否命题不一定为真.

  (3).原命题为真,它的逆否命题一定为真

  (七)回扣引入

  分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:

  第一句:“该来的没来”

  其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。

  第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。

  第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。

  同学们,生活中处处是数学,期待我们善于发现的眼睛

  五、作业

  1.设原命题是“若

  断它们的真假.,则”,写出它的逆命题、否命题与逆否命题,并分别判

  2.设原命题是“当时,若,则”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假.

高中数学教学设计15

  教学目标

  1.明确等差数列的定义.

  2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

  3.培养学生观察、归纳能力.

  教学重点

  1. 等差数列的概念;

  2. 等差数列的`通项公式

  教学难点

  等差数列“等差”特点的理解、把握和应用

  教具准备

  投影片1张

  教学过程

  (I)复习回顾

  师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

  (Ⅱ)讲授新课

  师:看这些数列有什么共同的特点?

  1,2,3,4,5,6; ①

  10,8,6,4,2,…; ②

  生:积极思考,找上述数列共同特点。

  对于数列①(1≤n≤6);(2≤n≤6)

  对于数列②-2n(n≥1)(n≥2)

  对于数列③(n≥1)(n≥2)

  共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

  师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

  一、定义:

  等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

  如:上述3个数列都是等差数列,它们的公差依次是1,-2, 。

  二、等差数列的通项公式

  师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

  若将这n-1个等式相加,则可得:

  即:即:即:……

  由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

  如数列①(1≤n≤6)

  数列②:(n≥1)

  数列③:(n≥1)

  由上述关系还可得:即:则:=如:三、例题讲解

  例1:(1)求等差数列8,5,2…的第20项

  (2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

  解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

  (Ⅲ)课堂练习

  生:(口答)课本P118练习3

  (书面练习)课本P117练习1

  师:组织学生自评练习(同桌讨论)

  (Ⅳ)课时小结

  师:本节主要内容为:①等差数列定义。

  即(n≥2)

  ②等差数列通项公式 (n≥1)

  推导出公式:(V)课后作业

  一、课本P118习题3.2 1,2

  二、1.预习内容:课本P116例2P117例4

  2.预习提纲:

  ①如何应用等差数列的定义及通项公式解决一些相关问题?

  ②等差数列有哪些性质?

【高中数学教学设计】相关文章:

高中数学教学设计获奖09-22

高中数学优秀教学设计09-22

高中数学课堂教学设计(精选10篇)08-15

高中数学教学总结11-18

高中数学线上教学总结04-14

高中数学教学计划08-24

关于高中数学教学总结10-25

高中数学的教学计划02-01

高中数学教学计划模板11-04