教学设计

工程问题教学设计

时间:2023-03-16 02:15:46 教学设计 我要投稿

工程问题教学设计

  作为一名默默奉献的教育工作者,总归要编写教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。优秀的教学设计都具备一些什么特点呢?下面是小编整理的工程问题教学设计,希望能够帮助到大家。

工程问题教学设计

工程问题教学设计1

  教学内容:人教版小学数学教材六年级上册第42~43页例7及相关练习。

  教学目标:

  1.让学生经历用“假设法”解决分数工程问题的过程,理解并掌握把工作总量看作单位“1”的分数工程应用题的基本特点、解题思路和解题方法。

  2.通过猜想验证、自主探究、评价交流等学习活动,培养学生分析、比较、综合、概括的能力。

  教学重点:认识工程问题的特点,掌握其数量关系、解题思路和方法。

  教学难点:学会用“工程问题”的方法解决实际问题。

  教学准备:课件。

  教学过程:

  一、复习旧知

  师:今天,我们将继续解决生活中的数学问题。先来看看,你能解决下面的问题吗?(ppt课件出示。)

  (1)修一条360米的公路,甲队修12天完成,平均每天修多少米?

  360÷12=30(米)。

  师:你是怎样列式的?为什么?(教师板书:工作总量÷工作时间=工作效率。)

  (2)修一条360米的公路,甲队每天修18米,多少天能完成?

  360÷18=20(天)。

  师:你是怎样列式的?为什么?(教师板书:工作总量÷工作效率=工作时间。)

  (3)加工一批零件,计划8小时完成,平均每小时加工这批零件的几分之几?

  1÷8=。(师:你是根据什么来列式的?)

  (师小结:不知道工作总量时,我们可以用单位“1”来表示,相对应的工作效率就用时间分之一来表示。)

  (4)一项工程,施工方每天完成,几天可以完成全工程?

  1÷=6(天)。(师:你又是根据什么来列式的?)

  【设计意图】小学生学习数学的过程就是新知识同原有知识相互作用,发展形成新的数学认识结构的过程。因此,在复习准备阶段,设计了上述4道基本练习题,帮助学生激发原有的知识记忆,使学生能进一步熟练运用工作总量、工作时间、工作效率这三个量之间的关系解决实际问题,并适当渗透工作总量、工作效率不是具体的数量时应该怎样表示,为学习新知做好铺垫。

  二、创设情境,设疑导入

  为了建设新农村,各地都在进行乡村公路的建设。张村也准备新修一条公路。两个工程队,一队单独修12天完成,二队单独修要18天完成。(ppt出示。)

  师:从以上条件,我们可以获得什么信息?

  (预设:一队每天修这条公路的;二队比一队多用6天完成;二队每天修这条公路的……)

  师:假如你是负责人,你会承包给谁?为什么?

  如果要修得又快又好,怎么办?

  (预设:让甲队修;可以让两个队一起修。)

  师:如果两队合修,多少天能修完?(PPT出示完整题目。)

  张村准备新修一条公路。两个工程队,一队单独修12天完成,二队单独修要18天完成。如果两队合修,多少天能修完?

  【设计意图】教材中的.例题设计了学生熟悉的修路情境,合理利用情境激发学生的学习兴趣,逐步展开,并在设疑中生成有教学价值的问题——“如果两队合修,多少天能修完”,展开新课教学。

  三、猜想验证,合作探究

  (一)猜想。

  师:请同学们先猜一猜两个队一起修路,大约几天能修完?(教师随机板书学生所说的天数。)

  师:在这些天数中,哪些天数可以排除?你是怎样想的?(得出“两队合修的天数比12天少”的结论。)

  (二)讨论。

  师:到底是几天呢?观察题目,想一想,要知道合修的时间,需要知道什么?

  (预设:需要知道工作总量和工作效率。)

  师:可这里的工作总量(也就是道路全长)是未知的,怎么解决?

  可以假设道路全长是多少?

  根据学生的回答,老师随机板书假设的长度(预设单位“1”,如36千米等。如果是假设具体数量,考虑12和18的公倍数会方便些)。

  师:请你选择其中一个道路全长的值,试一试解决这道题吧。

  (三)验证,辨析各种解法。

  1.学生用假设法解题,老师巡视,抽取不同假设的同学板书演示。

  2.全班交流评价各种方法,让学生说说自己解决的思路与方法。

  预设:(1)假设道路全长36千米,36÷(36÷12+36÷18)=7.2(天);

  (2)假设道路全长720米,720÷(720÷12+720÷18)=7.2(天);

  (3)假设道路全长为单位“1”,1÷=(天)。

  对于假设具体数据的解法,分析一种,让学生说一说数量关系。(先分别求出两队的效率,再用工作总量除以合作工作效率,即两队效率之和,求出合作修路所需的工作时间。)

  对用单位“1”及分率解题的方法,老师结合PPT进行重点追问:

  这里的1指什么,,各指什么?代表什么?为何用1÷?

  请学生结合工作总量、工作效率与工作时间的关系说一说。(同桌互相讨论这种解法的思路。)

  预设:如果有同学用1÷(1÷12+1÷18),肯定并说明可以直接写作的形式。

  【设计意图】猜想与验证是学生自主探究的有效方法,让学生发散思维,在猜测中预测结果,提高学生参与验证的热情。另外,因为学生的认知基础不同,允许验证的方法多样化,对于正确的答案都能给予肯定,让学生享受成功的喜悦。

  (四)小结建模,策略优化。

  1.同学们各自假设的道路总长不同,但答案都是7.2天,说明什么?

  (说明完成时间和道路总长没有关系。)

  在道路总长发生变化的时候,哪些量在变,哪些量没有变?

  引导小结:他们单独修的时间不变,无论假设道路全长是多少,两个队每天修的始终占道路全长的和.

  也就是说对这条公路的全长而言,他们每天修路的米数在变化,但他们每天修这条路的“几分之几”没有变。

  2.比较这几种解法,哪种解法更简便一些?

  小结 :这道题没有给出具体的工作总量,我们可以把工作总量看作单位“1”。

  根据“一队单独修12天完成”可知一队每天修全长的(也就是一队的工作效率),根据“二队单独修18天完成”可知二队每天修全长的(也就是二队的工作效率),所以表示两队工作效率之和。

  用工作总量单位“1”除以工作效率之和,即可求得两队合修所需的工作时间。

  【设计意图】在验证过程中,学生发现“工作总量变了,工作时间还是不变”,教师要引导学生悟出其中的算理,使每一个学生自主有效地形成新知。从上一环节的算法多样化,到这一环节的方法小结优化,使学生的思维“量”“质”兼备。

  (五)点明课题:这就是我们今天要学习的“工程问题”(板书课题)。

  (六)针对性练习。

  师:咱们一起来试试解题吧!(ppt出示教材第43页“做一做”。)

  交流解题方法,说一说“把工作总量看作单位1,效率就是次数分之一”。(PPT直观演示线段图。)

  【设计意图】发挥多媒体计算机辅助教学的优势,出示情境,绘制线段图,为学生提供形象直观的演示,让学生在观察、比较中解决疑难问题,进一步突破本课教学难点,提高教学效率。

  四、实践应用

  (一)辨析性练习

  判断题。

  (在正确算式后面的括号内打“√”,错误算式后面的括号内打“×”。并说明理由。)

  解答时出现了如下几种列式:

  ①300÷(8+10)……( );②300÷(300÷8+300÷10)……( );

  ③300÷……( );④1÷(300÷8+300÷10)…… ( );

  ⑤1÷……( )。

  【设计意图】学生对知识的理解容易出现片面性和笼统性,会把刚学的新知识与相似的旧知识混淆,通过辨析,进一步明确工作总量和工作效率必须要相对应,从而促进学生对工程问题本质特征的理解。

  (二)变式训练,类推应用

  1.甲车从A城市到B城市要行驶2小时,乙车从B城市到A城市要行驶3小时。两车同时分别从A城市和B城市出发,几小时后相遇?

  (改变问题情境,将工程问题转化为行程问题。)

  2.某水库遭遇暴雨,水位已经超过警戒线,急需泄洪。这个水库有两个泄洪口。只打开A口,8小时可以完成任务,只打开B口,6小时可以完成任务。如果两个泄洪口同时打开,几小时可以完成任务?

  【设计意图】通过变式训练,引导学生寻找知识间的联系,进行迁移、类推,加强学生对本节课的理解与对知识的消化,有效巩固工程问题的解题思路和解题方法,从而提高解题能力。

  五、全课总结

  说一说本节课你有什么收获?

  今天学习工程问题,这类题目的特点是:①把工作总量看作单位“1”;②谁几天完成,谁的工作效率就是几分之一;③用工作总量除以工作效率和就得到工作时间。

  六、课外作业

  1.教材第45页第6题;

  2.阅读教材第45页“你知道吗”内容。

工程问题教学设计2

  教学内容:

  小学数学第十一册第98页例10

  教材简析:

  工程问题应用是分数应用题中的一个特例。它的数量关系和解题思路与整数工程应用题基本相同。本节教学,主要是用整数工程应用题引入,让学生根据具体数量解答,然后把工作总量抽象成一个整体,用单位“1”表示。通过教学,使学生理解工程问题的实际意义,掌握它的解题方法,培养学生的分析,对比能力和综合、概括能力,提高他们的解题能力,发展他们的智力。

  教学目标:

  1、认识分数工程问题的特点。

  2、理解、掌握分数工程问题的数量关系,解题思路和方法。

  3、能正确解答分数工程问题。

  教具、学具准备:投影片几张。

  过程设计:

  一、复习引入:

  口答列式:

  1、修一条100米长的.跑道,5天修完。平均每天修多少米?

  2、一项工程,5天完成,平均每天完成几分之几?

  3、修一条100米长的跑道,每天修25米,几天修完?

  4、一项工程,每天完成1/8,几天可以完成全工程?

  (通过这组题,复习工程问题的三个基本数量关系,以及工作总量、工作效率、不定具体的数量应样表示,为学习用分数解答奠定基础。)

  二、新课:

  1、引出课题:工程问题应用题、

  2、教学例10

  (1)出示例10:一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?

  (2)审题后,根据条件问题列成下表,分析解答,讲算理:

  工作总量

  甲独修完成时间

  乙独修完成时间

  两队合修完成时间

  30天

  10天

  15天

  3、改变例10中的工作总量,让学生猜一猜,算一算,两队合修几天可以完成?接上表在工作总量栏中写出:60千米、90千米。

  (1)让学生猜完后,计算:

  (2)订正后问:为什么总千米数不同,而两队 合修的天数都一样?

  (通过工作总量的改变,让学生猜猜、算算合修的天数,激发学生学习工程问题的兴趣,引起思考,让学生带着强烈的好奇心投入到新课的学习中。)

  4、如果去掉“长30千米”这个条件, 改为“修一段公路”,还能不能解答?

  (1)组织学生讨论:

  (2)列式解答、讲算理、

  (3)比较与归纳:

  再讨论:

  1)这题与上面的练习题材有什么相同和不同的地方?

  2)两题的解题思路是否相同呢?

  3)用分数解答工程问题的解题特点是什么?

  4)指出例10这样的题目可用两种方法解答。

  (通过学习讨论,引导学生认识分数工程问题的特征,掌握了用分数解答工程问题的方法。)

  三、练习:

  1、第98页做一做。(通过基本练习,让学生及时掌握、巩固工程问题的解法。)

  2、第99页

  3、判断题。

  (通过辨析、使学生进一步明确解答工程问题,工程总量和工作效率必须要相对应。加深学生对工程民问题应用题的特征的理解,牢固掌握解题方法。)

工程问题教学设计3

  教学目标

  1.理解工程问题的数量关系,掌握工程问题的特征,分析思路及解题的方法

  2.能正确熟练地解答这类应用题

  3.培养学生运用所学到知识解决生活中的实际问题

  教学重点

  理解工程问题的数量关系和题目特点,掌握分析、解答方法

  教学难点

  理解工程问题的数量关系

  教学过程

  一、复习旧知

  (一)解答下面应用题

  1.挖一条水渠100米,用5天挖完,平均每天挖多少米?

  列式:1005=20(米)

  2.挖一条水渠,用5天挖完,平均每天挖全长的几分之几?

  列式:

  教师提问:上面这两道题研究的是哪三种的关系?已知什么,求什么?

  学生回答:上面两道题研究的是工作总量,工作时间和工作效率的三量关系,已知工作总量和工程时间,求工作效率

  3.挖一条水渠100米,平均每天挖20米,几天可以挖完?

  列式:10020=5(天)

  4.挖一条水渠,每天挖全长的,几天可以挖完?

  列式:(天)

  师生小结:上面3、4两题研究的是工作总量、工作效率和工作时间问题.已知工作总量,工作效率求工作时间

  二、探索新知

  (一)教学例9

  例9.一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?

  1.教师提问:

  (1)用我们学过的方法怎样分析?怎样解答?

  30(3010+3015)=6(天)

  (2)把上题的一段公路完成60千米、90千米、30千米、24千米等如何分析解答?

  60(6010+6015)=6(天)

  90(9010+9015)=6(天)

  24(2410+2415)=6(天)

  (3)通过计算,你发现了什么?(结果都相同)

  (4)为什么结果都相同呢?

  工作总量的具体数量变了,但数量关系没有变;工作效率是用工作总量工作时间得到的,所以工作效率是随着工作总量的变化而变化的'.因此它们的商也就是工作时间不变)

  (5)去掉具体的数量,你还能解答吗?

  把这段公路的长看作单位1,甲队每天修这段公路的,乙队每天修这段公路的.两队合修,每天可以修这段公路的()

  列式:

  2.教师:这就是我们今天学习的新知识.(板书课题:工程问题)

  3.归纳总结

  4.小组讨论:工程问题有什么特点?

  工作总量用单位1表示,工作效率用来表示数量关系:工作总量工作效率(和)=工作时间

  5.练习

  (1)一项工程,甲队单独做20天完成,乙队单独做要30天完成,如果两队合作,每天完成这项工程的几分之几?几天可以完成?

  (2)加工一批零件,甲单独用12小时,乙单独做用10小时,丙单独做用15小时.甲、丙两人合作,多少小时完成?甲、乙、丙三人合作多少小时可以完成?

  三、巩固练习

  (一)选择正确的算式

  一堆货物,甲车单独运4小时可以完成,乙车单独运6小时可以完成,现在由甲、乙两车合运这批货物的,需要多少小时?正确列式是

  四、归纳总结

  今天我们这节课学习了新的分数应用题-工程应用题.其解答特点是什么?(工作总量工作效率和=合作时间)工程应用题的结构特点是什么?(把工作总量看作单位1,工作效率用表示.)工程应用题还有很多变化,以后我们继续学习.

  五、板书设计

  工程问题

  例9.一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?

  30(3010+3015)=6(天)

  一段公路,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?

  (天)

  特点:工作总量:1

  工作效率:

  工作总量工作效率=工作时间

  工作总量工作效率和=合作时间

  教案点评:

  该教学设计的特点是新旧知识联系紧密,重点突出。复习中,通过应用题条件的变化,准确的抓住新知识的生长点。新课中,通过新旧知识的对比,突出了工程问题独特的分析思路和解题方法。

  探究活动

  迎接狂欢节

  活动目的

  1.掌握分数应用题的分析和解答方法

  2.进一步加深对分数应用题的数量关系和联系的认识

  活动题目

  鸡爸爸和鸡妈妈为了明天的动物狂欢节,两人计划赶做280面小彩旗发给鸡宝宝们.当天快黑的时候,鸡爸爸已做了自己任务的,鸡妈妈已做了自己任务的,这时,他们数了数,还剩下64面小彩旗没有完成,他们准备等吃过饭后,休息片刻来继续完成.夜深的时候,鸡爸爸和鸡妈妈终于完成了任务

  小朋友,你知道鸡爸爸、鸡妈妈他们每人做多少面小彩旗吗?

  活动过程

  1.教师出示活动题目

  2.学生分小组讨论

  3.小组汇报解答过程,方法多并且简单的小组为优胜组

工程问题教学设计4

  教学内容:

  人教版九年义务教育五年制小学数学第九册第95页例9及相应练习。

  教学目标:

  1、使学生认识工程应用题的特点,初步掌握它的解答方法,理解解题思路。

  2、培养学生猜测、观察、推理等能力,培养学生的创新意识及合作能力;

  3、加强数学和学生生活实际的联系,使学生体验到数学就在身边,对数学产生兴趣。

  教学重点:

  自主探究解决工程问题的方法。

  教学难点:

  工作总量用单位1表示及工作效率所表示的含义。

  教学过程

  一、创设情境,激发学生学习兴趣。

  谈话:请同学想一想近两年我们学校发生了那些变化?在建设方面有哪些?我们现在中学、小学已经合成了一个学校,为了使同学们能够健康的成长和学校的发展,学校领导决定修一条高档次的一级塑胶跑道。大家高不高兴?今天我们来研究修跑道的问题。现在请每一位同学包括我在内来做这项工程的总指挥,那么你打算找什么样的工程队?

  师:如果我们将新修跑道的工程进行招标,应聘单位有三个,他们都承诺能保质保量完成任务,但甲工程队单独完成需10天,乙工程队单独完成需15天,丙工程队单独完成需20天。(板书:修一段跑道,甲队单独修需10天,乙队单独修需15天,丙队单独修需20天。)

  师:因为有施工现场,学校考虑到同学们的安全,学校领导想让工程队提前完成任务,要加快施工速度,还要保证质量,咱们该怎么办?咱们现在找两个工程队行不行?

  二、提出问题,引导学生探索解决的方法。

  师:同学们可以猜想一下,两个工程队共同加工需要的`天数大概会是多少天?

  师:现在就请同学们以小组为单位帮忙算一算需要几天能完成。想办法验证一下,自己的猜想是不是正确?

  (板书:两队合修需几天完成任务?)

  教师巡视,认真观察各组讨论情况,并根据具体情况进行分类。

  师:哪位同学愿意把你们的方法展示给大家?

  让不同层次的小组由浅入深的发言,并让其他同学提出自己不明白的问题给予解答。

  师:跑道的长度没有确定,咱们可以把这段跑道用单位1来表示。

  (1)把这段跑道看作单位1,那么甲队每天完成这项工程的多少?乙队呢?(甲队每天完成这项工程的110,乙队每天完成这项工程的115)。

  (2)110和115这两个分数是怎样推算出来的?(因为甲队用10天可以修完,把单位1平均分成10份,1天修其中的1份,所以甲车每天修这项工程的110。因为乙队15天可以修完,把单位1平均分成15份,1天修其中的1份,所以乙队每天修这项工程的115。)

  教师说明:还可以这样想,用工作量1除以工作时间,就得到工作效率110或115。

  (3)两工程队合修,每天可以修这项工程的多少?(110+115)

  (4)工作量有了,两队的工作效率也有了,怎样计算两队合修多少天可以运完呢?根据什么数量关系来列式的?

  引导学生列出算式解答。教师板书:

  1(110+115)=116=6(小时)

  教师讲解:修一段跑道,那么工作总量到底是多少呢?工作总量在题目中没有给出具体的数,我们就可以把它看作单位1。根据甲队单独修10天完成,可以得知甲每天修这项工程的110,根据乙队单独修15天完成可以求出乙每天完成这项工程的115。110+115的表示甲乙两队的工作效率和。所以,今后再列式可以直接写成:1(110+115)。

  教师小结:同学们,在实际生活中,还有好多这样的例子,像盖房子、修公路、打稿件等等。我们可以称这样的问题为工程问题(板书)。工程问题有什么特点?今后我们做这类的问题的关键是什么?(把工作总量看作单位1,用单位时间内完成工作总量的几分之一来表示工作效率。)

  三、运用数学知识,解决生活中的实际问题。

  师:下面就请大家用学到的知识去解决生活中的一些问题,有没有信心?

  1、只列式,不计算。

  (1)修一段日照沿海公路,甲队单独修需要8天修完,乙队单独修需要10天修完。甲、乙合修,几天可以完成任务?

  (2)打一份稿件,小红单独需8小时完成,小明打完需12小时,两人合作打需几小时?

  (3)从甲站到乙站,快车要行6小时,慢车要行9小时。两车同时从两站对开,几小时相遇?

  2、修一段跑道,甲队单独修需10天,乙队单独修需15天,丙队单独修需20天。三队合修需几天完成任务?

  3、一堆货物,甲车单独运,4小时可以运完乙四单独运,6小时可以运完。现在由甲、乙两车合运这堆货物的34,需要多少小时?

  4.编题练习。

  四、归纳总结

  这节课你的收获是什么?今天我们探索、研究的问题在现实生活和生产中还有很多,希望同学们用我们所学的知识解决生活中的问题,把我们的学校和家乡建设的更美好。

工程问题教学设计5

  教学目标:

  1、掌握工程问题的结构特征和解答方法,并能应用于解决实际问题,工程问题应用题教学设计。

  2、培养学生的观察、分析及综合概括能力及抽象思维能力。

  重点:工程问题的结构特征。

  难点:数量之间的对应关系。

  一、激趣引入

  1、谈话。张老师去新华书店买《三国演义》上下集,她所带的钱如果只买上集正好可买20本,只买下集正好可买30本,请问张老师所带的钱最多可买这种书多少套?猜一猜。

  2、到底哪位同学猜得正确,通过今天这堂课的学习,我们就能解决这个问题。所以,今天我们继续学习应用题。(板书:应用题)

  二、类比迁移

  1、出示准备。

  修建一条公路长300米,由甲队单独修建需要10天完成,由乙队单独修建需要15天完成。两队合修需要多少天完成?

  (1)指名板演,集体练习

  (2)反馈、交流。

  2、把300米改为600米、900米、1200米、若干米,分组计算。

  (1)通过刚才的计算,我们发现什么变了,什么没有变?为什么?

  (2)再观察一下,以上算式都是根据哪个数量关系来进行计算的呢?

  (3)如果总米数没有,但还是求两队合修需多少天完成,又该怎么样列式计算呢?

  三、探索新知

  1、出示例题:修建一条公路长,由甲队单独修建需要10天完成,由乙队单独修建需要15天完成。两队合修需要多少天完成?

  (1)比较。

  (2)思考:

  A、这条公路的.全长不知道怎么办?

  B、甲队每天修了这条公路的几分之几?乙队呢?

  C、(+)表示什么?

  D、根据什么数量关系解答这类应用题的?

  2、再比较:例题和准备题在解答方法上有什么相同点?有什么不同点?

  3、归纳:象这类工作总量没有直接告诉我们,可用单位"1"表示,用表示工作交率,解答思路与工作问题一样,象这种分数应用题,教案《工程问题应用题教学设计》。我们把它叫做"工程问题"(完整板书)。

  4、把工作总量看作"2、3"行不行?分组计算。发现计算结果是一样的。但为了计算简便,工程问题应用题中,我们常把工作总量看作单位"1"。

  四、巩固性练习

  第一层次:试一试。

  一项工程,由甲工程队单独施工,需8天完成;由乙工程队单独施工,需12天完成。两队共同施工,需要多少天完成?

  (1)指名板演,集体练习。

  (2)据式说理。

  (3)改变条件和问题。

  两队合作4天后,完成这项工程的几分之几?

  还剩下几分之几?

  第二层次:

  (1)车站有货物48吨,用甲车运6小时可以完成,用乙车运4小时可以完成。用两种车同时运多少小时可以运完?

  下列算式正确的是。

  48÷(48÷6+48÷4)

  48÷(+)

  1÷(+)

  (2)只列式不计算

  加工一批零件,甲单独加工8小时完成,乙单独加工10小时完成。

  (1)甲单独加工,每小时完成总工作量的。

  (2)乙单独加工,每小时完成总工作量的。

  (3)甲、乙合做,1小时完成了总工作量的。

  (4)甲、乙合做,3小时完成了总工作量的。

  (5)甲、乙合做,3小时,还剩下总工作量的。

  (6)这批零件,甲、乙合做小时完成。

  (7)两人合打天才能完成这份稿件的。

  第三层次:

  工程问题不只限于上述三种量之间的关系,也适用于其他某些量之间的关系。

  (1)一辆汽车从甲地开到乙地需要6小时,另一辆汽车从乙地开到甲地需要5小时。两车同时从两地相向工出,经过几小时两车相遇?

  (2)张老师去新华书店买《三国演义》上下集,她所带的钱如果只买上集正好可买20本,只买下集正好可买30本,请问张老师所带的钱最多可买这种书多少套?

  五、课堂小结

  1、这节课,我们主要学习了什么内容?

  2、工程问题的特点是什么?

  3、解这类题的关键是什么?

  六、提高练习

  (1)生产一批零件,甲单独做15天可以完成,由乙单独做12天可以完成,两单独做10天可以完成,如果三人合做,多少天可以完成?

  (2)一项工作,甲乙两人合做12天可以完成,由甲单独做20天可以完成,由乙单独做,多少天可以完成?

【工程问题教学设计】相关文章:

工程问题教学设计(精选12篇)10-31

《相遇问题》教学设计11-14

折扣问题教学设计05-09

《发现与明确问题》教学设计08-31

植树问题教学设计(精选18篇)03-06

烙饼问题教学设计(精选11篇)10-26

《解决问题的策略》教学设计06-09

《植树问题》教学设计与反思(精选13篇)05-27

《重叠问题》教学设计(通用12篇)03-11