教学设计 百文网手机站

初中数学教学设计

时间:2022-11-15 12:59:42 教学设计 我要投稿

初中数学教学设计(精选19篇)

  作为一名专为他人授业解惑的人民教师,通常需要准备好一份教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么应当如何写教学设计呢?以下是小编整理的初中数学教学设计,仅供参考,欢迎大家阅读。

初中数学教学设计(精选19篇)

  初中数学教学设计 篇1

  课题:

  12.3等腰三角形

  教学内容:

  新人教版八年级上册十二章第三节等腰三角形

  设计理念:

  教学的实质是以教材中提供的素材或实际生活中的一些问题为载体,通过一系列探究互动过程,渗透分类讨论、数形结合和方程的思想方法,达到学生知识的构建、能力的培养、情感的陶冶、意识的创新。

  ㈠教材的地位和作用分析

  等腰三角形是新人教版八年级上册十二章第三节等腰三角形的第一课时的内容。本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。

  另外,本堂课通过“活动探究”、“观察—猜想—证明”等途径,进一步培养学生的动手能力、观察能力、分析能力和逻辑推理能力,因此,本堂课无论在知识上,还是在对学生能力的培养及情感教育等方面都有着十分重要的作用。

  ㈡教学内容的分析

  本堂课是等腰三角形的第一堂课,在认识等腰三角形的基础上着重介绍“等腰三角形的性质”。在教学设计的过程中,通过展示我国今年举办的精彩绝伦的盛会—上海世博会图片中的等腰三角形,结合云南丰富的文化资源,让学生感知生活中处处有数学,感受图形的和谐美、对称美;通过学生感兴趣的数学情景引入等腰三角形定义,提高学生的学习乐趣;让学生通过动手剪等腰三角形、对折等腰三角形等活动,探究发现等腰三角形的性质,经历知识的“再发现”过程。在探究活动的过程中发展创新思维能力,改变学生的学习方式。

  在发现等腰三角形的性质的基础上,再经过推理证明等腰三角形的性质,使得推理证明成为学生观察、实验、探究得出结论的自然延伸,有机地将等腰三角形的认识与等腰三角形的性质的证明结合起来,从中发展学生推理能力。

  在例题的选取上,注重联系实际,激发学生学习兴趣,让学生主动用数学知识解决实际问题,同时渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自己的数学思维和能力,发展学生应用数学的意识。

  二、目标及其解析

  ㈠教学目标:

  知识技能:

  1.了解等腰三角形的概念,认识等腰三角形是轴对称图形;2.经历探究等腰三角形性质的过程,理解等腰三角形的性质的证明;

  3.掌握等腰三角形的性质,能运用等腰三角形的性质解决生活中简单的实际问题。

  数学思考:

  1.经历“观察?实验?猜想?论证”的过程,发展学生几何直观;

  2.经历证明等腰三角形的性质的过程,体会证明的必要性,发展合情推理能力和初步的演绎推理能力、

  解决问题:

  1.能运用等腰三角形的性质解决生活中的实际问题,发展数学的应用能力,获得解决问题的经验;

  2.在小组活动和探究过程中,学会与人合作,体会与他人合作的重要性、

  情感态度:

  1、经历“观察?实验?猜想?论证”的过程,体验数学活动充满着探究性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性,并有克服困难和运用知识解决问题的成功体验,建立学好数学的自信心;

  2、经历运用等腰三角形解决实际问题的过程,认识数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用;

  3、在独立思考的基础上,通过小组合作,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,在交流中获益、

  ㈡教学重点:

  等腰三角形的性质及应用。

  ㈢教学难点:

  等腰三角形性质的证明。

  ㈣解析

  本堂课是等腰三角形的第一堂课,所以对于本堂课的知识目标的定位,主要考虑如下:

  1.了解等腰三角形的概念,认识等腰三角形是轴对称图形,在本堂课中要达到如下要求:

  ⑴理解等腰三角形的定义,知道等腰三角形的顶角、底角、腰和底边

  ⑵知道等腰三角形是轴对称图形,它有一条对称轴,即:顶角角平分线(底边上的高或底边上的中线)所在直线;

  2.经历探究等腰三角形性质的过程,掌握等腰三角形的性质的证明,在课堂中让学生参与等腰三角形性质的探索,鼓励学生用规范的数学言语表述证明过程,发展学生的数学语言能力和演绎推理能力,引导学生完成对等腰三角形的性质的证明;

  3.会利用等腰三角形的性质解决简单的实际问题,本堂课要达到以下要求:掌握等腰三角形的性质,会利用等腰三角形的性质解决简单的实际问题。

  三、问题诊断分析

  1、在这堂课中,学生可能遇到的第一个困难是等腰三角形性质的发现,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质,解决这一问题教师主要借助等腰三角形对称性的研究,并引导学生理解“重合”这个词的涵义。

  2、这堂课学生可能遇到的第二个问题是证明等腰三角形的性质

  这一问题主要有三个原因:

  第一学生刚接触几何证明不久,对数学语言表达方式还不熟悉;这一困难,并不是一堂课就能解决的,而要在以后学习中帮助学生增强数学语言运用的能力,能有条理地、清晰地阐述自己的观点。在这堂课中我通过等腰三角形性质的证明,鼓励学生运用规范的数学语言来表述,使学生数学语言能力和演绎推理能力得到提升;

  第二是添加辅助线的问题,这也是学生在证明中的一个难点。要解决这一问题,我借助等腰三角形是轴对称图形,通过研究等腰三角形的对称轴,让学生理解三种添加辅助线的方法,即作顶角角平分线、底边上的高或底边上的中线;

  第三是证明等腰三角形顶角角平分线、底边上的中线、底边上的高互相重合这一性质,要突破这一难点,我采用先证明等腰三角形两底角相等这一性质,为学生搭一个台阶,更好地解决这个难点。

  3、这堂课中学生可能遇到的第三个问题是对等腰三角形的性质的应用,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质的应用;所以我在设计课堂练习时,注重数学知识与生活实际的联系,提高学生数学学习的兴趣,让学生主动运用数学知识解决实际问题,并通过练习渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。

  四、教法、学法:

  教法:

  常言道:“教必有法,教无定法”。所以我针对八年级学生的心理特点和认知能力水平,大胆应用生活中的素材,并作了精心的安排,充分体现数学是源于实践又运用于生活。

  因此,本堂课的教学中,我以学生为主体,让学生积极思维,勇于探索,主动地获取知识。同时,采用了现代化教学技术,激发学生的学习兴趣,使整个课堂“活”起来,提高课堂效率。本堂课以生活中的一些例子为中心,让学生亲自尝试,接受问题的挑战,充分展示自己的观点和见解,给学生创设一个宽松愉快的学习氛围,让学生体验成功的快乐,为终身学习和发展打打下坚实的基础。

  本堂课的设计是以课程标准和教材为依据,采用发现式教学。遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生大胆猜想,小心求证的科学研究的思想。

  学法:

  学生都渴望与他人交流,合作探究可使学生感受到合作的重要和团队的精神力量,增强集体意识,所以本课采用小组合作的学习方式,让学生遵循“情景问题?实践探究?证明结论?解决实际问题”的主线进行学习。

  让学生从活动中去观察、探索、归纳知识,沿着知识发生,发展的脉络,学生经过自己亲身的实践活动,形成自己的经验,产生对结论的感知,实现对知识意义的主动构建。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会自主学习,学会探索问题的方法。

  五、教学支持条件分析

  在本堂课中,准备利用长方形纸片、剪刀、圆规和直尺等工具,剪出等腰三角形,利用等腰三角形,通过对折、多媒体动画演示等方法发现等腰三角形的性质,并且借助多媒体信息技术与实际动手操作加强对所学知识的理解和运用。

  初中数学教学设计 篇2

  一、学情分析

  八年级学生具有强烈的好胜心和求知欲,抽象思维趋于成熟,形象直观思维能力较强,具有一定的独立思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理

  二、教材分析

  这节课是人教版八年级第十八章第一节的内容,教学内容是勾股定理公式的推导、证明及其简单的应用。本节课是在学生已经掌握了直角三角形有关性质的基础上进行学习的,勾股定理是几何中最重要的定理之一,它揭示的是直角三角形中三条边之间的数量关系,将数与形密切联系起来,为以后学习四边形、圆、解直角三角形等数学知识奠定了基础。

  它有着丰富的历史背景,在数学的发展中起着重要的作用,在现实生活中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

  三、教学目标设计

  知识与技能

  探索勾股定理的内容并证明,能够运用勾股定理进行简单计算和运用

  过程与方法

  (1)通过观察分析,大胆猜想,探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

  (2)在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学过程,并体会数形结合和从特殊到一般的思想方法。

  情感态度与价值

  (1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。

  (2)利用远程教育资源介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

  四、教学重点难点

  教学重点

  探索和证明勾股定理

  教学难点

  用拼图的方法证明勾股定理

  五、教学方法

  (学法)“引导探索法”

  (自主探究,合作学习,采用小组合作的方法。

  六、教具准备

  课件、三角板

  七、教学过程设计

  教学环节1

  教学过程:

  创设情境探索新知

  教师活动:

  出示第24届国际数学家大会的会徽的图案向学生提问

  (1) 你见过这个图案吗?

  (2) 你听说过“勾股定理”吗?

  学生活动:

  学生思考回答

  设计意图:

  目的在于从现实生活中提出“赵爽弦图”,进一步激发学生积极主动地投入到探索活动中,同时为探索勾股定理提供背景材料。

  教学环节2

  教学过程:

  实验操作获取新知归纳验证完善新知

  教师活动:

  出示课件,引导学生探索

  学生活动:

  猜想实验合作交流画图测量拼图验证

  设计意图:

  渗透从特殊到一般的数学思想。为学生提供参与数学活动的时间和空间,发挥学生的主体作用;让学生自己动手拼出赵爽弦图,培养他们学习数学的成就感。通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想,调动学生思维的积极性,激发学生探求新知的欲望。给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性。

  教学环节3

  教学过程:

  解决问题应用新知

  教师活动:

  出示例题和练习

  学生活动:

  交流合作,解决问题

  设计意图:

  通过运用勾股定理对实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源于生活,并能服务于生活,顺利解决如何将实际问题转化为求直角三角形边长的问题,培养学生的数学应用意识。

  教学环节4

  教学内容:

  课堂小结巩固新知布置作业

  教师活动:

  引导学生小结

  学生活动:

  讨论交流、自由发言

  设计意图:

  既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。

  通过布置课外作业,给学生留有继续学习的空间和兴趣,及时获知学生对本节课知识的掌握情况,适当的调整教学进度和教学方法,并对学习有困难的学生给与指导。

  八、板书设计

  勾股定理:如果直角三角形的两直角边分别为a和b,斜边为c,那么 a2+b2=c2

  九、习题拓展

  如图,将长为10米的梯子AC斜靠在墙上,BC长为6米。

  (1)求梯子上端A到墙的底端B的距离AB。

  (2)若梯子下部C向后移动2米到C1点,那么梯子上部A向下移动了多少米?

  十、作业设计

  1、收集有关勾股定理的证明方法, 下节课展示、交流。

  2、做一棵奇妙的勾股树(选做)

  初中数学教学设计 篇3

  教材分析

  1、这节的重点为:去括号。因此,本节所学的知识实际上就是对前面所学知识的一个巩固和深化,要突破这个重点,只有在掌握方法的前提下,通过一定的练习来掌握。

  2、去括号是整式加减的一个重要内容,也是下一章一元一次方程的直接基础,也是今后继续学习整式的乘除、因式分解、方程,以及分式、函数等的重要基础。

  学情分析

  去括号法则是教材上的教学内容,学生学习时会经常出现错用法则的现象。实验表明:完全可以用乘法分配律取代去括号法则、这是由于:

  (1)“去括号法则”,增加了记忆负担和出错的机会,容易出错;

  (2)去括号的法则增加了解题长度,降低了学习效率;

  (3)用乘法分配律去括号的学习是同化而非顺应,易于理解与掌握;

  (4)用乘法分配律去括号是回归本质,返璞归真,且既可减少学习时间,又能提高运算的正确率。

  教学目标

  1、熟练掌握去括号时符号的变化规律;

  2、能正确运用去括号进行合并同类项;

  3、理解去括号的依据是乘法分配律。

  教学重点和难点

  重点

  去括号时符号的变化规律。

  难点

  括号外的因数是负数时符号的变化规律。

  教学过程

  一、创设情景问题

  青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的形式速度可以达到120千米/时。

  请问:在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0、5小时,如果通过冻土地段需要t小时,则这段铁路的全长可以怎么样表示?冻土地段与非冻土地段相差多少千米?

  解:这段铁路的全长为100t+120(t-0、5)(千米)

  冻土地段与非冻土地段相差100t-120(t-0、5)(千米)。

  提出问题,如何化简上面的两个式子?引出本节课的学习内容。

  二、探索新知

  1、回顾:

  1你记得乘法分配率吗?怎么用字母来表示呢?

  a(b+c)=ab+ac

  2-(-2)=(-1)X(-2)=2+(-3)=(+1)X(-3)=-3

  2、探究

  计算(试着把括号去掉)

  (1)13+(7-5)(2)13-(7-5)

  类比数的运算,去掉下面式子的括号

  (3)a+(b-c)(4)a-(b-c)

  3、解决问题

  100t+120(t-0、5)=100t-120(t-0、5)=

  思考:

  去掉括号前,括号内有几项、是什么符号?去括号后呢?

  去括号的依据是什么?

  三、知识点归纳

  去括号法则:

  如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

  如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.

  注意事项

  (1)去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;

  (2)括号内原有几项去掉括号后仍有几项.

  四、例题精讲

  例4化简下列各式:

  (1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b)、

  五、巩固练习

  课本P68练习第一题、

  六、课堂小结

  1、今天你收获了什么?

  2、你觉得去括号时,应特别注意什么?

  七、布置作业

  课本P71习题2、2第2题

  初中数学教学设计 篇4

  一、案例背景介绍

  (一)教学环境

  在我们着手进行课题《初中数学分层教学方式与策略研究》的研究开始后,大家齐心协力探索、研究方法,组内各种分层招数可谓是百花齐放,为此我代表课题组上了一节分层教学的展示课,以供同仁观摩点评,为促进数学教学的分层设计向更好的方向前行作贡献。

  (二)学生情况

  我校学生大部分来自韩庄镇不同的自然村,由于小学地域的不同,所以学生的基础各不相同,很多学生的基础还相当薄弱。因此这种情况特别适合分层教学。

  (三)教材情况

  本课是人教版初三数学上册第24章圆第2节点和圆、直线和圆的位置关系中的一个课时:直线和圆相切的情况。学生已经有了点和圆的位置关系的基础以及直线和圆的位置关系的数量的认识,本节课研究直线与圆的特殊位置关系相切,将相切从位置到数量的逻辑自然过渡,进而引出圆的切线的判定和性质。重点是圆的切线的判定定理和性质定理。难点是判定定理的理解和性质定理证明中反证法的理解。

  二、案例内容设计及说明

  环节一:复习引入

  通过回顾旧知再次加深圆与直线的位置关系,在全班集体朗读中体会d与r的关系,并顺势将位置关系量化这一问题显化,同时自然引出特殊情况――相切

  环节说明:俗话说书读百遍,其意自现。数学概念在朗读中更能逐渐理解其本质,因此不光语文需要朗读,数学也要朗读。而且针对我班学困生上课听不懂,不会做的现象,这样来设计复习方式更能调动我班学生学习的动力,让每位学生都参与到课堂教学中来。这也是这个环节分层的体现。

  环节二:新知探究

  活动

  1、引导学生从直线与圆相切的位置及数量关系上来深入探究,通过动态演示来理解一条直线何时变成圆的切线。

  环节说明:上节课得到的圆与直线相切是数量上的关系,通过动态的演示让学生明确位置的变化,从而总结出切线的判定。但是引导很重要,从两个方面去观察:直线经过哪里?与圆的半径有什么位置关系?需要老师点拨。并要等待学生来总结,不能操之过急。分层体现1对观察的结果分别让两位程度较差的学生回答,再让中等程度的学生来总结;体现2对定理的数学表达让全体学生写在练习本上,老师选择展示,并修改;体现3对总结出的判定进行朗读。

  2、将判定的题设和结论互换后的探究。

  环节说明:反证法在过三点做圆时已有所涉及,所以在这里用反证法证明切线的性质时让学生互相交流讨论然后进行汇报就行,不要进行过多的引申,否则淡化了主题。分层体现1讨论交流时采取师傅和徒弟在同一组,师傅负责解释证明的方法;体现2数学语言的书写让学生自己写并派代表写在黑板上。

  环节三:巩固和应用

  通过判断题加深对切线的判定和性质的理解。通过师生共同分析解决几何解答证明题,并由学生书写证明步骤。

  环节说明:判断题中设置了3道小题,并给出了反例,能使学生更加明确定理的意义。这里教学的分层体现在针对反例来问学困生为什么不对,让学生说出违背了所需条件的哪一条,强化切线判定条件在这部分学生头脑中的印象。例题的分析采取了小组讨论交流的方法,与环节二中的分组一样,分层体现在“师带徒”弄清解题思路,师傅增强了解题的逻辑性,更严密,徒弟学会了解题的分析,拓宽了视野,打开了思路。在有思路的前提下,全班安静书写步骤。还可以展示在投影下,由学生来评判书写的是否清楚。

  环节四:课堂小结

  在小结中,除了总结出本节课所学的判定和性质外,将相关的判定和性质做一归纳很有必要,“在不断的总结中收获、进步”不是吗?同时提出下节课要学习的相关性质更能激起学生学习的积极性。

  环节说明:在小结的分层中判定由程度稍差点的学生总结,哪怕照着书上找都行,并进行诵读,使其再次熟知所学知识。在性质的总结中,老师抛出两条本节未涉及的性质给学生,让学生课后思考证明,在下节课时可由学生简要发表见解并证明。

  环节五:拓展练习

  通过引导学生添加辅助线,点拨学生圆中常用辅助线的做法,分情况添加恰当的辅助线。这两个练习旨在拓展尖子生的思维。

  环节六:作业布置

  通过分层布置,使每位学生都能在自己能力范围内进行巩固练习。

  环节说明:作业

  1、重点面向学困生考察其掌握基础的程度。作业

  2、针对待优生夯实基础的基础上,提高其运用能力。作业

  3、是设计的培优计划,对学有余力的学生来说是个很好的锻炼机会。

  三、案例分析与反思

  实际上本节课中圆的切线的判定定理是为了便于应用而对直线和圆相切的定义改写得到的一种形式,而圆的切线的性质定理的证明仅仅要求学生再次感受反证法,并不要求会应用,所以本节的设计在分层中很注重理解和感知,通过互帮互助和朗读感知达到难点的突破,另外圆是学生学习的第一个曲线形,由直线形到曲线形,在知识上是一个飞跃,本节利用图形运动变化过程发现其中图形的性质,做好了知识前后的衔接,同时加强了新旧知识的联系,发挥出了知识的迁移作用。类比也是本节课所用到的一个重要的学习方法,而且在教授过程中难度的控制非常适当,分层的影子处处可见。纵观整节课的分层之处进入都很自然,也落到了实处,但分层效果的检测没有体现出来,这也是遗憾之处。

  初中数学教学设计 篇5

  一、案例实施背景

  本节课是20xx-20xx学年度第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为北师大版义务教育教科书七年级数学(上册)。

  二、案例主题分析与设计

  本节课是北师大版义务教育教科书七年级数学(上册)——科学记数法,它是在学习乘方的基础上,研究更简便的记数方法,是第二章有理数及其运算的重要组成部分。 《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同

  时通过小组内学生相互协作研究,培养学生合作性学习精神。

  三、案例教学目标

  1、知识与技能:

  掌握科学记数法的方法,能将一些大数写成科学记数法。

  2、过程与方法:

  在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

  3、情感态度与价值观:

  通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。

  四、案例教学重、难点

  1、重点:

  正确运用科学记数法表示较大的数

  2、难点:

  正确掌握10的幂指数特征,将科学记数法表示的数写成原数

  五、案例教学用具

  1、教具:多媒体平台及多媒体课件、图片

  六、案例教学过程

  一、创设情境,兴趣导学:

  1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗?

  2、展示课本第63页图片,现实中,我们会遇到一些比较

  大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。

  师:(展示刚才演示过的3个大数)我们能不能找到更好的记数方法使下列各数更加便于读、写?请同学们六个人一组,分组进行讨论。

  (1) 1 370 000 000 (2) 6 400 000 (3) 300 000 000

  生1:答:13.7亿,640万,3亿。

  师:回答正确。这是数字加上单位的记数方法,在小学已经学过,是比较常用的一种方法,可是它有一定的局限性。如果我在3亿后面再加上好多个0,那么这种记数方法还好用吗? 生:不好用。(让学生意识到以前所学的方法不够用了) 师:接下来我们一起来探索新的记数方法。

  分析:在读写大数时使学生感觉到不方便,从实际生活的需要,自然引入课题,需要寻找一种更简单的方法记数,为新课创设了良好的问题情境。

  二、尝试探索,讲授新课:

  1、探索10n的特征

  计算一下102、103、104、105、1010你发现什么规律? 102=100103 =1 00010 4 =10 000105=100 0001010 =10 000 000 000

  (观察并思考,小组讨论)

  (1)结果中“0”的个数与10的指数有什么关系?

  (2)结果的位数与10的指数有什么关系?

  2、练习:将下列个数写成只有一位整数乘以10n的形式。

  (1)500(2)3000(4)40000

  师:(学生完成之后)可见这种表示方法不仅书写简短,同时还便于读数。这就是我们本节课研究的内容—科学记数法。

  3、分析:

  通过教师引导,学生小组讨论,合作探究,成功地找到表示大数的简便记数方法——科学记数法。

  4、科学记数法:

  像上面这样,把一个大于10的数表示成 a×10n的形式(其中1≤a<10,a是整数数位只有一位的数,n是整数),这种记数方法叫做科学记数法。

  (思考,小组讨论)

  10的指数与结果的位数有什么关系?

  分析:这是本节课的重难点:10的幂指数n与原数的整数位数之间的关系。从特殊数据出发,寻找解决问题的方案,这符合“特殊到一般”的认知规律。在探究过程中,学生的探究活动体现了“化繁为简”、“分析归纳”的数学思想。

  三、巩固新知,知识运用:

  将下列各数写成科学记数法形式。

  (1)23 000 000

  (2)453 000 000

  (3)13 400 000 000 000 000米

  用科学记数法表示是多少米?

  分析:学生的模仿能力强,在分析讨论10的指数与结果的位数有什么关系时,会与前面曾经讨论过的10n联系起来,也可以对知识进行迁移和回顾。再加上学生好奇心都特别强,很想将自己总结出来的结论加以应用,针对以上学生特点,给出相应的练习题。这样学生能够体会到学以致用的乐趣,从而调动学生自主学习的积极性。

  (观察并思考,小组讨论)

  如何将一个用科学记数法表示的数写成原数?

  a×10n将a的小数点向右移动n位原数

  分析:这是本节课另一个重点,也是知识的逆向巩固,学生通过寻找写出原数的方法,更加明白在写科学记数法时,如何确定10的指数,同时也学会了如何写出原数。

  七、教学反思:

  数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好

  地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。

  初中数学教学设计 篇6

  一、内容和内容解析

  (一)内容

  概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.

  (二)内容解析

  现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.

  二、目标和目标解析

  (一)教学目标

  1.理解不等式的概念

  2.理解不等式的解与解集的意义,理解它们的区别与联系3.了解解不等式的概念

  4.用数轴来表示简单不等式的解集

  (二)目标解析

  1.达成目标1的标志是:能正确区别不等式、等式以及代数式.

  2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.

  3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.

  4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.

  三、教学问题诊断分析

  本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.

  因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.

  四、教学支持条件分析

  利用多媒体直观演示课前引入问题,激发学生的学习兴趣.

  五、教学过程设计

  (一)动画演示情景激趣

  多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.

  (二)立足实际引出新知

  问题一辆匀速行驶的汽车在11︰20距离a地50km,要在12︰00之前驶过a地,车速应满足什么条件?

  小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)

  设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.

  (三)紧扣问题概念辨析

  1.不等式

  设问1:什么是不等式?

  设问2:能否举例说明?由学生自学,老师可作适当补充.比如:是不等式.

  2.不等式的解

  设问1:什么是不等式的解?设问2:不等式的解是唯一的吗?由学生自学再讨论.

  老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式

  3.不等式的解集

  设问1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都设问2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.

  老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.

  4.解不等式

  设问1:什么是解不等式?由学生回答.

  老师强调:解不等式是一个过程.

  设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.

  (四)数形结合,深化认识

  问题1:由上可知,x>75既是不等式的解集.那么在数轴上如何表示x>75呢?问题2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75就是不等式.

  设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.

  (五)归纳小结,反思提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题

  1、什么是不等式?<的解集,也是不等式>50

  2、什么是不等式的解?

  3、什么是不等式的解集,它与不等式的解有什么区别与联系?

  4、用数轴表示不等式的解集要注意哪些方面?

  设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.

  (六)布置作业,课外反馈

  教科书第119页第1题,第120页第2,3题.

  设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.

  六、目标检测设计

  1.填空

  下列式子中属于不等式的有___________________________

  ①x +7>

  ②x≥ y + 2 = 0

  ③ 5x + 7

  设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.

  2.用不等式表示

  ① a与5的和小于7

  ② a的与b的3倍的和是非负数

  ③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.

  初中数学教学设计 篇7

  (一)提出问题,导入新课

  1、解二元一次方程组

  问题

  母亲26岁结婚,第二年生个儿子,若干年后母亲的年龄是儿子年龄到3倍,此时母亲的年龄为几岁?

  解法一:设经过x年后,母亲的年龄是儿子年龄的3倍。 由题意得

  26+x=3x 解法二:设母亲的年龄为x岁。 由题意得

  x=3(x-26)

  (二)精选讲例,探求新知

  例2、某班有45位学生,共有班费2400元钱,准备给每位学生订一份报纸。已知《作文报》的订费为60元/年,《科学报》的订费为50元/年,则订阅两种报纸各多少人?

  巩固练习 小明和小李两人进行投篮比赛,规则:小明投3分球,小李投2分球,两人共投中20次,经计算两人得分相等,问小李和小明各投中几个球。

  (三)变式训练,激活学生思维

  问题

  1、小明和小李两人进行投篮比赛,小明投3分球,小李投2分球,两人共投中100次,小明投中率为40%,小明投中率为40%,经计算两人得分相等,问小李和小明各投中几个球。 问题

  2、已知某电脑公司有A型、B型、C型3种型号的电脑,其价格分别为A型6000元/台、B型4000元/台、C型2500元/台,我校计划将100500元钱全部用于从该公司购进其中两种不同型号电脑共36台,请你设计出几种不同的购买方案供学校采用。小红的方案:她认为可以购进A型和B型电脑,请你判断小红提出的方案是否合理,并通过计算说明。

  (四)课堂练习,巩固新知

  1、A、B两地相距36千米,甲从A地出发步行到B地,乙从B地出发步行到A地,两人同时出发,4小时候相遇。若6小时后,甲所余路程为乙所余路程的2倍,求甲乙两人的速度。

  2、某班借来一批图书,分借给同学阅览,如果每人借6本,那么会有一个同学没书可借,如果每人借5本,那么还剩5本书没人借,问该班有多少人,有多少书。

  (五)拓展

  1、变题训练问题2中,若学校要购买A、B、C3种型号的电脑,有如何安排?

  2、某中学新建一栋4层的教学大楼,每层楼有8间教室,进、出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同。安全检查中,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。

  ⑴问平均每分钟一道正门和一道侧门各可以通过多少名学生。

  ⑵检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离。假设这栋大楼每间教师最多有45名学生,问建造的这4道门是否符合安全规定。

  初中数学教学设计 篇8

  在初中的数学教学过程中,函数教学是比较难的章节,我们该如何设计我们的教学过程呢?下面我来谈谈我的一些很浅的看法:首先函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,它在初中数学中具有较强的综合性。在教学中,学生常常觉得函数抽象深奥,高不可攀,老师也觉得函数难讲,讲了学生也理解不了,理解了也不会解题。事实果真如此难教又难学吗?下面我谈谈在教学设计方面一些方法和实践。

  一、注重类比教学

  不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法,利用类比的思想进行教学设计实施教学,可称为类比教学、在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由学会到会学,真正实现教是为了不教的目的、有经验的老师都会发现,初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此采用类比的教学方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。下面我就举例说明如何采用类比的方法实现函数的教学。

  首先是正比例函数,它是一次函数特例,也是初中数学中的一种简单最基本的函数。但是,我们有些教师却因为正比例函数过于简单,而轻视。匆匆给出概念,然后应用。等到讲到一次函数、反比例函数、二次函数又感到力不从心,学生接受起来概念模糊,性质混乱,解题方法不明确。造成这种困扰的原因是因为忽视正比例函数的基础作用,我们应该借助正比例函数这个最简单的函数载体,把函数研究经典流程完整呈现,正所谓麻雀虽小,五脏俱全。再学习其他函数时,在此基础上类比学习,循序渐进,螺旋上升。例如:

  《正比例函数》教学流程

  (一)环节一:概念的建立

  通过对问题的处理用函数y=200x来反映汽车的行程与时间的对应规律引入新课。学生自觉思考教师提问,共同得出每个问题的函数关系式。引导学生观察以上函数关系式的特点得出正比例函数的描述定义及解析式特点。

  (二)环节二:函数图象

  这个环节是教学的重点,由学生先动手按列表——描点——连线的过程画函数y=2x和y=-2x的图象,相互交流比较然后教师利用多媒体展示画函数图象的过程并通过比较使学生正确掌握画函数图象的方法。

  (三)环节三:探究函数性质

  让学生观察函数图象并引导学生通过比较来归纳正比例函数的性质,这个环节是本课的难点,教师要引导学生从图象的形状,从左往右的升降情况,经过的象限及自变量变化时函数值的变化规律。这几个方面来归纳,最终得出正比例函数的性质。

  (四)环节四:概念的归纳

  将观察、探究出的函数图象的特征、函数的性质等做出系统的归纳。

  二、注重数形结合的教学

  数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。

  函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的数形结合。函数图象就是将变化抽象的函数拍照下来研究的有效工具,函数教学离不开函数图象的研究。在借助图象研究函数的过程中,我们需要注意以下几点原则:

  (1)让学生经历绘制函数图象的具体过程。

  首先,对于函数图象的意义,只有学生在亲身经历了列表、描点、连线等绘制函数图象的具体过程,才能知道函数图象的由来,才能了解图象上点的横、纵坐标与自变量值、函数值的对应关系,为学生利用函数图象数形结合研究函数性质打好基础。其次,对于具体的一次函数、反比例函数、二次函数的图象的认识,学生通过亲身画图,自己发现函数图象的形状、变化趋势,感悟不同函数图象之间的关系,为发现函数图象间的规律,探索函数的性质做好准备。

  (2)切莫急于呈现画函数图象的简单画法。

  首先,在探索具体函数形状时,不能取得点太少,否则学生无法发现点分布的规律,从而猜想出图象的形状;其次,教师过早强调图象的简单画法,追求方法的最优化,缩短了学生知识探索的经历过程。所以,在教新知识时,教师要允许学生从最简单甚至最笨拙的方法做起,渐渐过渡到最佳方法的掌握,达到认识上的最佳状态。

  (3)注意让学生体会研究具体函数图象规律的方法。

  初中阶段一般采用两种方法研究函数图象:一是有特殊到一般的归纳法,二是控制参数法。

  函数是一个整体,各个具体函数是函数的特例,研究方法应是相同的,通过类比和数形结合的方法,对比性质的差异性,将具体函数逐步纳入到整个函数学习中去,这也符合教材设计的螺旋式上升的理念。这样自然使二次函数变得难着不难,水到渠成。

  关于待定系数法,首先要让学生理解感受到待定系数法的本质:对于某些数学问题,如果已知所求结果具有某种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件建立起给定的算式和结果之间的恒等式,得到以待定系数为元的方程或方程组,解之即得待定的系数。待定系数法在确定各种函数解析式中有着重要的作用,不论是正、反比例函数,还是一次函数、二次函数,确定函数解析式时都离不开待定系数法。因此我们要重视简单的正比例函数、一次函数的待定系数法的应用。要在简单的函数中讲出待定系数法的本质来,等到了反比例函数和二次函数及综合情况,学生已能形成能力,自如使用此方法,这时就是技巧的点拨。

  初中数学教学设计 篇9

  一、教学目标:

  1、知道一次函数与正比例函数的定义、

  2、理解掌握一次函数的图象的特征和相关的性质;

  3、弄清一次函数与正比例函数的区别与联系、

  4、掌握直线的平移法则简单应用、

  5、能应用本章的基础知识熟练地解决数学问题。

  二、教学重、难点:

  重点:

  初步构建比较系统的函数知识体系。

  难点:

  对直线的平移法则的理解,体会数形结合思想。

  三、教学过程:

  1、一次函数与正比例函数的定义:

  一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数

  正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

  2、 一次函数与正比例函数的区别与联系:

  (1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

  (2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。

  基础训练:

  1、 写出一个图象经过点(1,- 3)的函数解析式为: 。

  2、直线y = - 2X - 2 不经过第 象限,y随x的增大而。

  3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。

  4、已知正比例函数 y =(3k-1)x,若y随x的增大而增大,则k是: 。

  5、过点(0,2)且与直线y=3x平行的直线是: 。

  6、若正比例函数y =(1-2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是: 。

  7、若y-2与x-2成正比例,当x=-2时,y=4,则x= 时,y = -4

  8、直线y=- 5x+b与直线y=x-3都交y轴上同一点,则b的值为 。

  9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。(1)求线段AB的长。(2)求直线AC的解析式。

  四、教学反思:

  教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。

  课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问

  题的答案做出来,尽量要一题多解。再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。台上他们是主角,台下他们也是主角。

  从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。

  初中数学教学设计 篇10

  一、内容和内容解析

  平行四边形是“空间与图形”领域中最基本的几何图形,它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包含其性质在生产、生活各领域的实际应用。

  平行四边形,是建立在前面学习了四边形的概念和性质的基础之上,将要学习的特殊的四边形。本节课是平行四边形的第一课时,主要研究平行四边形的概念和边、角的性质。

  关于平行四边形的概念,在小学,学生已经学过,并不会感到生疏,但对于这个概念的本质属性,理解的并不是十分深刻,所以,本节课的学习,并不是简单的重复。本节课,平行四边形的定义采用的是内涵定义法,即“种概念+属差=被定义的概念”。在平行四边形的定义中,大前提是“四边形(种概念)”,条件是“两组对边分别平行(属差)”。“两组对边分别平行”是平行四边形独有的、用以区别于一般四边形的本质属性,这也是平行四边形概念的核心之所在。平行四边形的概念,揭示了平行四边形与四边形的隶属关系、区别与联系,反映了平行四边形的本质属性。同时,它既是平行四边形的判定,又可以作为平行四边形的一个性质。

  关于平行四边形边、角的性质,“平行四边形的对边相等”相对于定义中的“两组对边分别平行”,是由位置关系向数量关系的一种延伸;“平行四边形的对角相等”相对于“两组对边分别平行”,是由“相邻的角互补”产生的思维的一种深化。同时,两条性质的探究,经历的是“感知、猜想、验证、概括、证明”的认知过程;两条性质的研究,先从边分析,再从角分析,再到下一节课的从对角线分析,提供的是研究几何图形性质的一般思路;两条性质的证明,渗透的是将四边形问题转化为三角形问题的一种转化思想,而添加对角线,介绍的是将四边形问题转化为三角形问题的一种常用的转化手段。

  在本章的后续学习中,对于几种特殊的四边形,其定义均采用的是内涵定义法,并且矩形和菱形的定义,均以平行四边形作为种概念,所以平行四边形的概念作为“核心概念”当之无愧。关于平行四边形的性质,也是后续学习矩形、菱形、正方形等知识的基础,这些特殊平行四边形的性质,都是在平行四边形性质基础上扩充的,它们的探索方法,也都与平行四边形性质的探索方法一脉相承,因此,平行四边形的性质,在后续的学习中,也是处于核心地位。

  教学重点:

  平行四边形的概念和性质。

  二、目标和目标解析

  (1)教学目标:

  ①掌握平行四边形的概念及性质。

  ②学会用分析法、综合法解决问题。

  ③体会特殊与一般的辩证关系。

  ④逐步养成良好的个性思维品质。

  (2)目标解析:

  ①使学生掌握平行四边形的概念,掌握平行四边形的对边相等,对角相等的性质,会根据概念或性质进行有关的计算和证明。

  ②通过有关的证明及应用,教给学生一些基本的数学思想方法。使学生逐步学会分别从题设或结论出发,寻求论证思路,学会用综合法证明问题,从而提高学生分析问题解决问题的能力。

  ③通过四边形与平行四边形的概念之间和性质之间的联系与区别,使学生认识特殊与一般的辩证关系,个性与共性之间的关系等。使学生体会到事物之间总是互相联系又相互区别的,进一步培养辩证唯物主义观点。

  ④通过对平行四边形性质的探究,使学生经历观察、分析、猜想、验证、归纳、概括的认知过程,培养学生良好的个性思维品质

  初中数学教学设计 篇11

  一、教学目标:

  1、理解二元一次方程及二元一次方程的解的概念;

  2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;

  3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;

  4、在解决问题的过程中,渗透类比的思想方法,并渗透德育教育、

  二、教学重点、难点:

  重点:

  二元一次方程的意义及二元一次方程的解的概念、

  难点:

  把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程、

  三、教学方法与教学手段:

  通过与一元一次方程的比较,加强学生的类比的思想方法; 通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点、

  四、教学过程:

  1、情景导入:

  新闻链接:桐乡70岁以上老人可领取生活补助,

  得到方程:80a+150b=902 880、

  2、新课教学:

  引导学生观察方程80a+150b=902 880与一元一次方程有异同?

  得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程、

  做一做:

  (1)根据题意列出方程:

  ①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价、设苹果的单价x元/kg , 梨的单价y元/kg ;

  ②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程: 、

  (2)课本P80练习2、 判定哪些式子是二元一次方程方程、

  合作学习:

  活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动、

  问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人、

  团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行? 为什么? 把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等? 由学生检验得出代入方程后,能使方程两边相等、 得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解、

  并提出注意二元一次方程解的书写方法、

  3、合作学习:

  给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值; 接下来男女同学互换、(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法、提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?

  出示例题:已知二元一次方程 x+2y=8、

  (1)用关于y的代数式表示x;

  (2)用关于x的代数式表示y;

  (3)求当x= 2,0,-3时,对应的y的值,并写出方程x+2y=8的三个解、

  (当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)

  4、课堂练习:

  (1)已知:5xm-2yn=4是二元一次方程,则m+n=;

  (2)二元一次方程2x-y=3中,方程可变形为y= 当x=2时,y= ;

  5、你能解决吗?

  小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角、小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案、

  6、课堂小结:

  (1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);

  (2)二元一次方程解的不定性和相关性;

  (3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式、

  7、布置作业

  (1)教材P82; (2)作业本、

  教学设计意图:

  依照课程标准,通过分析教材中教学情境设计和例习题安排的意图,在此基础上依据学生实际,制订了本堂课的教学目标,教学重点和难点,课堂教学的设计始终围绕这教学重点和难点展开、

  在充分理解教材编写意图、教学要求和教学理念的基础上,根据学生实际,从学生的已有经验出发,创设了教学情境:关心老人,突出情感主线,并贯穿整个教学、 并对教学

  内容进行适当的重组、补充和加工等,创造性地使用了教材、 所选择的例习题都体现实际问题数学化的思想,让学生感受到数学的魅力、 这两个方面的设计贯穿整堂课,把知识内容和情感体验自然连贯起来、

  其次,在教学过程设计中,体现了让学生展示解决问题的思维过程,通过几个合作学习,激发学生主动去接触问题,从而达到解决问题的目的、 重视学生学习过程中的自我评价和生生间的相互评价,关注学生对解题思路回顾能力的培养、

  二元一次方程概念的教学中,通过与一元一次方程的类比的方法,使得学生加深印象、 在突破难点的设计上,通过游戏的形式激发学生的学习兴趣,并在选题时,通过降低例题的难度,使学生迅速掌握用关于一个未知数的代数式表示另一个字母的方法,体会运用这种方法的可使求二元一次方程求解更简便、

  初中数学教学设计 篇12

  教学目标

  1、知道什么是全等形、全等三角形及全等三角形的对应元素;

  2、知道全等三角形的性质,能用符号正确地表示两个三角形全等;

  3、能熟练找出两个全等三角形的对应角、对应边、

  教学重点

  全等三角形的性质、

  教学难点

  找全等三角形的对应边、对应角、

  教学过程

  一、提出问题,创设情境

  1、问题:你能发现这两个三角形有什么美妙的关系吗?

  这两个三角形是完全重合的

  2、学生自己动手(同桌两名同学配合)

  取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样、

  3、获取概念

  让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号、

  形状与大小都完全相同的两个图形就是全等形、

  要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同、

  概括全等形的准确定义:能够完全重合的两个图形叫做全等形、请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义、仔细阅读课本中"全等"符号表示的要求、

  二、导入新课

  将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED、

  议一议:各图中的两个三角形全等吗?

  不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED、

  (注意强调书写时对应顶点字母写在对应的位置上)

  启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略、

  观察与思考:

  寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?

  (引导学生从全等三角形可以完全重合出发找等量关系)

  得到全等三角形的性质:全等三角形的对应边相等、全等三角形的对应角相等、

  [例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角、

  问题:△OCA≌△OBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?

  将△OCA翻折可以使△OCA与△OBD重合、因为C和B、A和D是对应顶点,所以C和B重合,A和D重合、

  ∠C=∠B;∠A=∠D;∠AOC=∠DOB、AC=DB;OA=OD;OC=OB、

  总结:两个全等的三角形经过一定的转换可以重合、一般是平移、翻转、旋转的方法、

  [例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角、

  分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来、

  根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素、常用方法有:

  (1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边、

  (2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角、

  解:对应角为∠BAE和∠CAD、

  对应边为AB与AC、AE与AD、BE与CD、

  [例3]已知如图△ABC≌△ADE,试找出对应边、对应角、(由学生讨论完成)

  借鉴例2的方法,可以发现∠A=∠A,在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边、而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了、再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角、所以说对应边为AB与AD、AC与AE、BC与DE、对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED、

  做法二:沿A与BC、DE交点O的连线将△ABC翻折180°后,它正好和△ADE重合、这时就可找到对应边为:AB与AD、AC与AE、BC与DE、对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED、

  三、课堂练习

  课本练习1

  四、课时小结

  通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素、这也是这节课大家要重点掌握的

  找对应元素的常用方法有两种:

  (一)从运动角度看

  1、翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素、

  2、旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素、

  3、平移法:沿某一方向推移使两三角形重合来找对应元素、

  (二)根据位置元素来推理

  1、全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边、

  2、全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角、

  五、作业

  课本习题1

  课后作业:《新课堂》

  初中数学教学设计 篇13

  教学目标

  1、使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

  2、了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

  3、通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

  4、通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

  教学建议

  1、知识结构:

  本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

  2、教学重点分析:

  教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

  (1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性、

  (2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式、如:2,m都是代数式、

  等都不是代数式、

  3、教学难点分析:

  能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

  如:说出代数式7(a-3)的意义。

  分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的.积。

  4、书写代数式的注意事项:

  (1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面、

  如3×a ,应写作3、a 或写作3a ,a×b 应写作3、a 或写作ab 、带分数与字母相乘,应把带分数化成假分数、数字与数字相乘一般仍用“×”号、

  (2)代数式中有除法运算时,一般按照分数的写法来写、

  (3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来、

  5、对本节例题的分析:

  例1是用代数式表示几个比较简单的数量关系,这些小学都学过、比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍、

  例2是说出一些比较简单的代数式的意义、因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已、

  6、教法建议

  (1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

  (2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。

  (3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

  (4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

  (5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

  7、教学重点、难点:

  重点:

  用字母表示数的意义

  难点:

  学会用字母表示数及正确说出一个代数式所表示的数量关系。

  教学设计示例

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  1、在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

  (通过启发、归纳最后师生共同得出用字母表示数的五种运算律)

  (1)加法交换律 a+b=b+a;

  (2)乘法交换律 a·b=b·a;

  (3)加法结合律 (a+b)+c=a+(b+c);

  (4)乘法结合律 (ab)c=a(bc);

  (5)乘法分配律 a(b+c)=ab+ac

  指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;

  (2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数

  2、(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

  3、若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

  4(、投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

  (用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)

  此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代数式、那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容、

  二、讲授新课

  1、代数式

  单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式、学习代数,首先要学习用代数式表示数量关系,明确代数上的意义

  2、举例说明

  例1 填空:

  (1)每包书有12册,n包书有__________册;

  (2)温度由t℃下降到2℃后是_________℃;

  (3)棱长是a厘米的正方体的体积是_____立方厘米;

  (4)产量由m千克增长10%,就达到_______千克

  (此例题用投影给出,学生口答完成)

  解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m

  例2 说出下列代数式的意义:

  解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

  (5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方

  说明:(1)本题应由教师示范来完成;

  (2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等

  例3 用代数式表示:

  (1)m与n的和除以10的商;

  (2)m与5n的差的平方;

  (3)x的2倍与y的和;

  (4)ν的立方与t的3倍的积

  分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面

  四、课堂练习

  1、填空:(投影)

  (1)n箱苹果重p千克,每箱重_____千克;

  (2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

  (3)底为a,高为h的三角形面积是______;

  (4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____

  2、说出下列代数式的意义:(投影)

  3、用代数式表示:(投影)

  (1)x与y的和; (2)x的平方与y的立方的差;

  (3)a的60%与b的2倍的和; (4)a除以2的商与b除3的商的和

  五、师生共同小结

  首先,提出如下问题:

  1、本节课学习了哪些内容?

  2、用字母表示数的意义是什么?

  3、什么叫代数式?

  教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号

  六、作业

  1、一个三角形的三条边的长分别的a,b,c,求这个三角形的周长

  2、张强比王华大3岁,当张强a岁时,王华的年龄是多少?

  3、飞机的速度是汽车的40倍,自行车的速度是汽车的1/3 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

  4、a千克大米的售价是6元,1千克大米售多少元?

  5、圆的半径是R厘米,它的面积是多少?

  6、用代数式表示:

  (1)长为a,宽为b米的长方形的周长;

  (2)宽为b米,长是宽的2倍的长方形的周长;

  (3)长是a米,宽是长的1/3 的长方形的周长;

  (4)宽为b米,长比宽多2米的长方形的周长

  初中数学教学设计 篇14

  一、教学目标

  1、使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

  2、培养学生观察能力,提高他们分析问题和解决问题的能力;

  3、使学生初步养成正确思考问题的良好习惯。

  二、教学重点和难点

  一元一次方程解简单的应用题的方法和步骤。

  三、课堂教学过程设计

  (一)从学生原有的认知结构提出问题

  在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

  为了回答上述这几个问题,我们来看下面这个例题。

  例1 某数的3倍减2等于某数与4的和,求某数。

  (首先,用算术方法解,由学生回答,教师板书)

  解法1:(4+2)÷(3-1)=3

  答:某数为3

  (其次,用代数方法来解,教师引导,学生口述完成)

  解法2:设某数为x,则有3x-2=x+4

  解之,得x=3

  答:某数为3

  纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一。

  我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。

  本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。

  (二)师生共同分析、研究一元一次方程解简单应用题的方法和步骤

  例2 某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?

  师生共同分析:

  1、本题中给出的已知量和未知量各是什么?

  2、已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

  3、若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

  上述分析过程可列表如下:

  解:设原来有x千克面粉,那么运出了15%x千克,由题意,得

  x-15%x=42 500,

  所以x=50 000

  答:原来有50 000千克面粉。

  此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

  (还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

  教师应指出:

  (1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

  (2)例2的解方程过程较为简捷,同学应注意模仿。

  依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

  (1)仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

  (2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);

  (3)根据相等关系,正确列出方程、即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

  (4)求出所列方程的解;

  (5)检验后明确地、完整地写出答案、这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。

  例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

  (仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨、解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式。)

  解:设第一小组有x个学生,依题意,得

  3x+9=5x-(5-4),

  解这个方程:2x=10,

  所以x=5

  其苹果数为3× 5+9=24

  答:第一小组有5名同学,共摘苹果24个。

  学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。

  (设第一小组共摘了x个苹果,则依题意,得)

  (三)课堂练习

  1、买4本练习本与3支铅笔一共用了1、24元,已知铅笔每支0、12元,问练习本每本多少元?

  2、我国城乡居民1988年末的储蓄存款达到3 802亿元,比1978年末的储蓄存款的18倍还多4亿元。求1978年末的储蓄存款。

  3、某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数。

  (四)师生共同小结

  首先,让学生回答如下问题:

  1、本节课学习了哪些内容?

  2、列一元一次方程解应用题的方法和步骤是什么?

  3、在运用上述方法和步骤时应注意什么?

  依据学生的回答情况,教师总结如下:

  (1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案、其中第三步是关键;

  (2)以上步骤同学应在理解的基础上记忆。

  (五)作业

  1、买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?

  2、用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

  3、某厂去年10月份生产电视机2050台,这比前年10月产量的2倍还多150台。这家工厂前年10月生产电视机多少台?

  4、大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉、求每个小箱子里装有洗衣粉多少千克?

  5、把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元。求得到一等奖与二等奖的人数。

  初中数学教学设计 篇15

  教学目标

  (1)认知目标

  理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。

  (2)技能目标

  经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。

  (3)情感态度与价值观

  教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验。

  教学重难点

  重点:

  运用分式的乘除法法则进行运算。

  难点:

  分子、分母为多项式的分式乘除运算。

  教学过程

  (一)提出问题,引入课题

  俗话说:“好的开端是成功的一半”同样,好的引入能激发学生兴趣和求知欲。因此我用实际出发提出现实生活中的问题:

  问题1:求容积的高是,(引出分式乘法的学习需要)。

  问题2:求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。

  从实际出发,引出分式的乘除的实在存在意义,让学生感知学习分式的乘法和除法的实际需要,从而激发学生兴趣和求知欲。

  (二)类比联想,探究新知

  从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。

  解后总结概括:

  (1)式是什么运算?依据是什么?

  (2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导,学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。

  (分式的乘除法法则)

  乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。

  除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  (三)例题分析,应用新知

  师生活动:教师参与并指导,学生独立思考,并尝试完成例题。

  P11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。P11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破本节课的难点我采取板演的形式,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。

  (四)练习巩固,培养能力

  P13练习第2题的(1)、(3)、(4)与第3题的(2)。

  师生活动:教师出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。

  通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式和结果。

  (五)课堂小结,回扣目标

  引导学生自主进行课堂小结:

  1、本节课我们学习了哪些知识?

  2、在知识应用过程中需要注意什么?

  3、你有什么收获呢?

  师生活动:学生反思,提出疑问,集体交流。

  (六)布置作业

  教科书习题6、2第1、2(必做)练习册P(选做),我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。

  板书设计

  在本节课中我将采用提纲式的板书设计,因为提纲式—条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆。

  初中数学教学设计 篇16

  一、内容与内容解析

  (一)内容

  一元一次不等式组的概念及解法

  (二)内容解析

  上节课学习了一元一次不等式,知道了一元一次不等式的有关概念及解法,本节课主要是学习一元一次不等式组及其解法,这是学习利用一元一次不等式组解决实际问题的关键.教材通过一个实例入手,引出要解决的问题,必须同时满足两个不等式,让学生经历通过具体问题抽象出不等式组的过程,进而通过一元一次不等式来类推学习一元一次不等式组、一元一次不等式组解集、解一元一次不等式组这些概念.学习不等式组时,我们可以类比方程组、方程组的解来理解不等式组、不等式组的解集的概念.求不等式组的解集时,利用数轴很直观,这是一种数与形结合的思想方法,不仅现在有用,今后我们还会有更深的体验. 基于以上的分析,本节课的教学重点:一元一次不等式组的解法.

  二、目标及目标解析(一)目标

  (1)理解一元一次不等式组、一元一次不等式组的解集等概念.

  (2)会解一元一次不等式组,并会用数轴确定解集.(二)目标解析

  达到目标(1)的标志是:

  学生能说出一元一次不等式组的特征.

  达到目标(2)的标志是:

  学生能解一元一次不等式组,能在数轴上确定不等式组的解集,并获得解一元一次不等式组的步骤.

  三、教学问题诊断分析

  通过前面的学习,学生已经掌握一元一次不等式的概念及解法,但是对于学生用数轴来表示不等式组的解集时还不够熟练,理解还不够深刻. 本节课的教学难点:在数轴上找公共部分,确定不等式组的解集.

  四、教学过程设计

  (一)提出问题 形成概念

  问题:用每分钟可抽30吨水的抽水机来抽污水管道里的积存污水,估计积存的污水超过1200吨而不足1500吨,那么将污水抽完所用的时间的范围是什么?

  设问(1):依据题意,你能得出几个不等关系?

  设问(2):设抽完污水所用的时间还是范围?

  小组讨论,交流意见,再独立设未知数,列出所用的不等关系.

  教师追问(1):类比方程组的概念,说出什么是一元一次不等式组?怎样表示? 学生自学概念,说出表示方法、

  教师追问(2):类比方程组的解怎样确定不等式组中x的取值范围? 学生经过小组讨论,老师点拨:不等式组中各个不等式解集的公共部分就是不等式组x的取值范围.

  教师追问(3):怎样解不等式,并用数轴表示解集? 学生独立完成.

  教师追问(4):通过数轴,怎样得出不等式组的解集? 学生独立完成,老师点评

  教师追问(5):什么是一元一次不等式组的解集?什么是解一元一次不等式组? 学生自学概念.

  设计意图:培养学生独立思考、合作交流意识,提高学生的观察、分析、猜测、概括和自学能力.并且渗透类比思想,得出一元一次不等式组以及其解集的概念,利用数轴的直观理解不等式解集的意义.

  (二)解法探讨 步骤归纳 例1 解下列不等式组

  学生尝试独立解不等式组,老师强调规范格式

  设问1:当两个不等式的解集没有公共部分,表示什么意思? 设问2:解一元一次不等式组的一般步骤是什么?

  学生总结归纳,老师适当补充,得出解一元一次不等式组的一般步骤是:

  (1)求每个不等式的解集;

  (2)利用数轴找出各个不等式的解集的公共部分;

  (3)写出不等式组的解集.

  设计意图:初步感受解一元一次不等式组的方法和步骤.

  (三)应用提高 深化认知

  例2 x取那些整数值时,不等式5x+2>3(x-1)与

  都成立?

  设问1:不等式都成立表示什么意思? 小组讨论

  设问2:要求x取哪些整数值,要先解决什么问题? 学生先合作交流,再独立解不等式组 设问3.怎样取值?

  学生在不等式组的解集范围内,取整数值.老师强调即求不等式组的特殊解. 设计意图:通过例2可以让学生构建不等式组,并解出不等式组,同时根据解集求出不等式组的特殊解,这是对学生解不等式组的一次提高训练.

  (四)归纳总结 反思提高

  教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题

  (1)什么是一元一次不等式组?什么是一元一次不等式组的解集?

  (2)解一元一次不等式组的一般步骤?

  (3)一元一次不等式组解集的一般规律是什么?

  设计意图:通过问题归纳总结本节课所学的主要内容.

  (五)布置作业 课外反馈 教科书习题9.3第1,2,3题

  设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.

  初中数学教学设计 篇17

  教学目的

  1、通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

  2、使学生会列一元一次方程解决一些简单的应用题。

  3、会判断一个数是不是某个方程的解。

  重点、难点

  1、重点:

  会列一元一次方程解决一些简单的应用题。

  2、难点:

  弄清题意,找出“相等关系”。

  教学过程

  一、复习提问

  一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

  解:设小红能买到工本笔记本,那么根据题意,得1.2x=6

  因为1.2×5=6,所以小红能买到5本笔记本。

  二、新授

  问题1:某校初中一年级328名 师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)

  算术法:(328-64)÷44=264÷44=6(辆)

  列方程:设需要租用x辆客车,可得44x+64=328

  解这个方程,就能得到所求的结果。

  问:你会解这个方程吗?试试看?

  问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

  通过分析,列出方程:13+x=(45+x)

  问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

  把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

  因为左边=右边,所以x=3就是这个方程的解。

  这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

  问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

  同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

  三、巩固练习

  教科书第3页练习1、2

  四、小结

  本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

  五、作业

  教科书第3页,习题6、1第1、3题。

  初中数学教学设计 篇18

  教学目标:

  (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

  重点难点:

  能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  教学过程:

  一、试一试

  1、设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

  2.x的值是否可以任意取?有限定范围吗?

  3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,

  对于1可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50平方米,对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.

  二、提出问题

  某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答:

  1.商品的利润与售价、进价以及销售量之间有什么关系?

  [利润=(售价-进价)×销售量]

  2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?

  [10-8=2(元),(10-8)×100=200(元)]

  3.若每件商品降价x元,则每件商品的利润是多少元?一天可销

  售约多少件商品?

  [(10-8-x);(100+100x)]

  4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

  [x的值不能任意取,其范围是0≤x≤2]

  5.若设该商品每天的利润为y元,求y与x的函数关系式。

  [y=(10-8-x) (100+100x)(0≤x≤2)]

  将函数关系式y=x(20-2x)(0 <x <10=化为:

  y=-2x2+20x(0<x<10)……………………………(1) 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+20D (0≤x≤2)……………………(2)

  三、观察;概括

  1、教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

  (1)函数关系式(1)和(2)的自变量各有几个?

  (各有1个)

  (2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式)

  (3)函数关系式(1)和(2)有什么共同特点?

  (都是用自变量的二次多项式来表示的)

  (4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

  2.二次函数定义:形如y=ax2+bx+c (a、b、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

  四、课堂练习

  1、(口答)下列函数中,哪些是二次函数?

  (1)y=5x+1 (2)y=4x2-1

  (3)y=2x3-3x2 (4)y=5x4-3x+1

  2.P3练习第1,2题。

  五、小结

  1.请叙述二次函数的定义.

  2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

  初中数学教学设计 篇19

  教学目标:

  1、使学生学会较熟炼地运用切线的判定方法和切线的性质证明问题、

  2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律、

  教学重点:

  使学生准确、熟炼、灵活地运用切线的判定方法及其性质、教学难点:学生对题目不能准确地进行论证、证题中常会出现不知如何入手,不知往哪个方向证的情形、

  教学过程:

  一、新课引入:

  我们已经系统地学习了切线的判定方法和切线的性质,现在我们来利用这些知识证明有关几何问题、

  二、新课讲解:

  实际上在几何证明题中,我们更多地将切线的判定定理和性质定理应用在具体的问题中,而一道几何题的分析过程,是证题中的最关键步骤、p、109例3如图7-58,已知:ab是⊙o的直径,bc是⊙o的切线,切点为b,oc平行于弦ad、求证:dc是⊙o的切线、

  分析:欲证cd是⊙o的切线,d是⊙o的弦ad的一个端点当然在⊙o上,属于公共点已给定,而证直线是圆的切线的情形、所以辅助线应该是连结oc、只要证od⊥cd即可、亦就是证∠odc=90°,所以只要证∠odc=∠obc即可,观察图形,两个角分别位于△odc和△obc中,如果两个三角形相似或全等都可以产生对应角相等的结果、而图形中已存在明显的条件od=ob,oc=oc,只要证∠3=∠4,便可造成两个三角形全等、

  ∠3如何等于∠4呢?题中还有一个已知条件ad∥oc,平行的位置关系,可以造成角的相等关系,从而导致∠3=∠4、命题得证、证明:连结od、教师向学生解释书上的证题格式属于推出法和因为所以法的联用,以后证题中同学可以借鉴、p、110例4如图7-59,在以o为圆心的两个同心圆中,大圆的弦ab和cd相等,且ab与小圆相切于点e求证:cd与小圆相切、

  分析:欲证cd与小⊙o相切,但读题后发现直线cd与小⊙o并未已知公共点、这个时候我们必须从圆心o向cd作垂线,设垂足为f、此时f点在直线cd上,如果我们能证得of等于小⊙o的半径,则说明点f必在小⊙o上,即可根据切线的判定定理认定cd与小⊙o相切、题目中已告诉我们ab切小⊙o于e,连结oe,便得到小⊙o的一条半径,再根据大⊙o中弦相等则弦心距也相等,则可得到of=oe、证明:连结oe,过o作of⊥cd,重足为f、

  请同学们注意本题中证一条直线是圆的切线时,这种证明途径是由直线与圆的公共点来给定所决定的、

  练习一

  p、111,1、已知:oc平分∠aob,d是oc上任意一点,⊙d与oa相切于点e、求证:ob与⊙d相切、分析:审题后发现欲证的ob与⊙d相切,属于ob与⊙d无公共点的情况、这时应从圆心d向⊙b作垂线,垂足为f,然后证垂线段df等于⊙b的一条半径,而题目中已给oa与⊙d切于点e,只要连结de、再根据角平分线的性质,问题便得到解决、证明:连结de,作df⊥ob,重足为f、p、111中2、已知如图7-61,△abc为等腰三角形,o是底边bc的中点,⊙o与腰ab相切于点d、求证:ac与⊙o相切、

  分析:欲证ac与⊙o相切,同第1题一样,同属于直线与圆的公共点未给定情况、辅助线的方法同第1题,证法类同、只不过要针对本题特点还要连结oa、从等腰三角形的”三线合一”的性质出发,证得oa平分∠bac,然后再根据角平分线的性质,使问题得到证明、证明:连结od、oa,作oe⊥ac,垂足为e、同学们想一想,在证明oe=od时,还可以怎样证?

  (答案)可通过“角、角、边”证rt△odb≌rt△oec、

  三、新课讲解

  为培养学生阅读教材的习惯让学生阅读109页到110页、从中总结出本课的主要内容:

  1、在证题中熟练应用切线的判定方法和切线的性质、

  2、在证明一条直线是圆的切线时,只能遇到两种情形之一,针对不同的情形,选择恰当的证明途径,务必使同学们真正掌握、

  (1)公共点已给定、做法是“连结”半径,让半径“垂直”于直线、

  (2)公共点未给定、做法是从圆心向直线“作垂线”,证“垂线段等于半径”、

  四、布置作业

  1、教材p、116中8、9

  2、教材p、117中2

【初中数学教学设计】相关文章:

初中数学的教学设计12-28

初中数学教学设计11-17

初中数学教学设计教案09-03

初中数学优秀教学设计09-03

初中数学教学设计范文11-08

初中数学角教学设计10-30

初中数学角教学设计10-30

最新初中数学教学设计精选11-15

初中数学教学设计与反思04-02