比和比例教学设计(精选26篇)
作为一名人民教师,就有可能用到教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么什么样的教学设计才是好的呢?以下是小编精心整理的比和比例教学设计,仅供参考,希望能够帮助到大家。
比和比例教学设计 篇1
教学目标:
1、使学生进一步掌握比和比例的意义、性质,能正确迅速地解比例、化简比和求比值。
2、进一步理解比例尺的意义,能应用比例尺的知识求出平面图的比例尺以及根据比例尺求图上距离和实际距离。
教学重点:
理解比和比例的意义、性质,掌握关于比和比例的一些实际运用和计算。
教学难点:
能理清知识间的联系,建构起知识网络。
教 法:
情境导入法、引导法
学 法:
小组合作、同桌交流、自主探究、归纳法、练习法
教学具准备:
小黑板
教学过程:
一、口算大比拼。
师:经过一个多月的口算训练,相信,同学们的口算能力一定提高了许多,现在咱们进行口算大比拼,看谁算的又对又快!
出示小黑板:
1÷0.125= 2.5×4= 0.92= 3.4÷0.17= 1-0.14=
3/5×10/3= 15÷5/8= 8-3/5= 1/4+2/5=
(1)指名个别提问。
(2)集体订正。
师:看来同学们的口算能力确实有很大地提高,那么相信,今天这节课大家也能上出精彩,上出自信的,大家有这个信心吗?
二、创设情景,导入复习:
师:现在老师这里有两个数字宝宝2和3,你能用一个式子来表示他们的关系吗?
(1)学生自由回答。
(2)选择有价值的板书:2:3 2/3 和2÷3
(3)师:数字宝宝6和9也想加入进来,你们能用这四个数字组成一个我们学过的式子吗?(生说出2:3=6:9)
导入:那么今天我们就一起来和比、比例这两个老朋友叙叙旧。
板书课题:比和比例的复习
三、回顾整理,建构网络:
(一)比和比例联系与区别。
1、自主交流。
(1)咱们都知道2:3是一个比的形式,那么究竟什么叫做比呢?我们还学了比的哪些知识呢?
(2)学生自由回答。
(3)你能举例说出一个比例式吗?我们都学习了比例的哪些知识呢?
(4)指名回答。
2、小组合作交流。
(1)共同看我们所举的比和比例的例子,你能从中发现他们的相同点和不同点吗?请你用自己喜欢的方式吧比和比例的有关知识进行归纳整理。
(2)小组合作交流。
3、全体交流。
指名几组学生代表在全班交流。
4、集体归纳整理。
师:刚才同学们用自己喜欢的方法对比和比例的有关知识进行了归纳整理,方法都不错,整理的很认真,那么比和比例有哪些区别,我们再来一起整理一下好吗?
师生共同整理比和比例的区别。
比
比例
意义
两数相除又叫两个数的比
表示两个比相等的式子叫做比例
各部分名称
0.9 : 0.6 = 1.5
前项 后项 比值
内 项
2 :3 = 6 :9
外 项
基本性质
比的前项和后项都乘上或除以相同的数(0除外)比值不变
在比例里,两外项之积等于两内项之积。
整理完后,教师小结:从表格中我们能清楚地看出比和比例的区别。
(二)比和除法、分数的联系。
1、师:比和除法、分数有哪些联系?
(1)结合课始处的2:3、2÷3和2/3让生说一说。
(2)指名举例说明他们的关系。
2、师:比的基本性质有什么用处?引入化简比。
(1)师:化简比和求比值是一回事吗?我们通过例子来说明吧。
(2)师板书4:2/5分别让学生化简比和求比值。通过计算让学生说出求比值和化简比的不同。
(3)师问:比例的基本性质有什么作用?
(4)及时练:(1)求出比值,并化简比。45:72 11.2 : 56
(2)解比例: 2:8=9:X 1.25:0.25=X:1.6
(5)指名板演,其他在练习本上做。
(6)集体评价。
(三)比例尺的有关知识。
1、什么叫比例尺?我们学过的比例尺有哪几种形式?
2、怎么求比例尺、图上距离、实际距离?
四、重点复习,强化提高:
师:现在老师这儿有一些数学问题,你们想用你们刚才复习的知识来解决它们吗?
(一)、心中有数。
1、把5克的糖放入100克水中,糖与糖水的比是( )。
2、甲数是乙数的6倍,那么甲数:乙数=( ):( )
3、把1吨:250千克化成最简整数比是( ),它们的
比值是( )。
4、如果A×3=B×5,那么 A:B=( ): ( )
(二)、慎重选择。
1、5:7的前项和后项都乘以3后,比值是( )
A、15:21 B、5:7 C、5/7
2、甲数与乙数的比是2:3,那么乙数是甲数的`( )
A、 2/3 B、 3/2 C、1/2
3、4:5能够和( )组成比例。
A、5:4 B、 1/4 : 3/4 C、 2/5 : 1/2
(三)、请你判断。
1、2/5 既可以看作是分数,也可以看作是比。( )
2、化简比就是求比值。 ( )
3、4米:8米的比值是 1/2 米。 ( )
(四)、爱的奉献。
四川大地震牵动着每一位中国人的心,我们进修附小全体师生慷慨解囊献出自己的爱心,97名老师捐款8000元,2200名学生捐款38000元,写出老师捐款数和人数的比以及学生捐款数和学生人数的比?
五、当堂检评,完善提高。
1、填空:
①根据右面的线段图,写出下面的比。
甲数:|_____|_____|_____|_____|
乙数:|_____|_____|_____|
(1)甲数与乙数的比是_______
(2)乙数与甲数的比是_______
(3)甲数与甲乙两数和的比是_______
(4)乙数与甲乙两数和的比是_______
②—:6的比值是( )。如果前项乘上3,要使比值不变,后项应该( )。如果前项和后项都除以2,比值是( )。
③把(1吨):(250千克)化成最简整数比是( ):( ),它们的比值是( )。
④如果A×3=B×5,那么A:B=( ):( )
如果a:4= 0.2:7,那么a=( )
2、P63第2题,解比例。
(1)指名板演。(4人)其他在练习本上做。
(2)集体评价。
六、全课总结。
同学们,上了这节课你们有什么收获和感受?你对自己的表现有什么评价?
七、板书设计:
比和比例复习与整理
2:3 2/3 和2÷3
2:3=6:9
(一)比和比例联系与区别。
(二)比和除法、分数的联系。
(三)比例尺的有关知识。
比和比例教学设计 篇2
教学内容:
苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。
教材学情分析:
本节课是《正比例和反比例》复习的第二教时,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。
“练习与实践”第7题让学生根据提供的两组数据判断相应的两种量分别成什么比例,有利于学生巩固对成正比例和反比例量的认识,掌握判断两种量是否成比例以及成什么比例的基本思考方法;“练习与实践”第8题让学生结合生活经验以及相关数量关系的理解,继续练习成正比例和反比例量的判断方法;“练习与实践”第9题的第一题让学生根据表示一辆汽车在高速公路上行驶的千米数和耗油量关系的图象,先判断这两种量是否成正比例,再根据其中一个量的数值估计另一个量的数值。第二题要求学生根据一辆汽车在市区行驶的千米数和耗油量关系的数据,在方格纸上画出表示它们关系的图象。通过上述活动,一方面可以使学生加深对正比例关系的认识,另一方面可以使进一步体会数学结合在解决问题方面的价值;“练习与实践”第10题是一个与比例尺有关的实际问题。教材先让学生量出一幅平面图上相关的图上距离,再让学生利用给出的比例尺求出相应的实际距离。教材这样的安排,主要让学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容有着密切联系的。
教学目标:
⑴使学生进一步认识成正比例和反比例的量,感受表示数量关系及其变化规律的.不同数学模型;能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。
⑵让学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容有着密切联系的。
⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。
教学重点:
进一步认识成正比例和反比例的量。
教学难点:
感受比的应用价值,在活动中获得一些新的认识。
教学具准备:
教学流程:
一、教师谈话,揭示课题。
⑴教师谈话。
教师谈话:上一节课我们复习了“比和比例”的有关知识,本节课我们继续复习这方面的知识。板书:正比例和反比例。
⑵揭示课题。
揭示课题——正比例和反比例。
二、师生互动,合作交流。
⑴完成“练习与实践”第7题。
呈现“练习与实践”第7题,明确要交流的主题:表中的两种量分别成什么比例?为什么?
班级交流判断的方法:一是利用表中的数据进行判断,在次体会正比例和反比例量在变化中的不同规律。成正比例关系的两种量同时扩大或缩小,它们扩大或缩小的倍数是相同的;成反比例的两种量,一个量扩大,另一种量反而缩小,它们扩大或缩小的倍数也是相同的;二是利用数量关系式判断,表格一:因为钢材质量:钢材体积=比重(一定),所以钢材质量和钢材体积成正比例;表格二:圆柱底面积×圆柱高=圆柱的体积(一定),所以圆柱底面积和圆柱高成反比例;利用图象判断,用描点的方法画出图象,如果是直线,则成正比例。
⑵完成“练习与实践”第8题。
呈现完成“练习与实践”第8题,明确要思考的内容:先写出数量关系式,再判断是否成比例?成什么比例?为什么?独立写出数量关系式,同桌交流。
第一问:因为每块砖的面积×砖的块数=一间教室的面积(一定),所以每块砖的面积和砖的块数成反比例;
第二问:因为圆的周长÷半径=2π,所以圆的周长和半径成正比例。
⑶完成“练习与实践”第9题。
呈现完成“练习与实践”第9题,明确要交流的内容:判断行驶的路程和耗油量是否成正比例;根据图象用一种数据判断另一种数据是多少。
班级交流理解、完成题目的情况,进行“根据图象用一种数据判断另一种数据是多少”的练习;反馈学生形成的正比例图象的情况;比较汽车高速公路和市区耗油量的不同情况,体会比例知识在日常生活中的应用价值。
⑷完成“练习与实践”第10题。
呈现完成“练习与实践”第10题,理解题目的意思,分别量出学校到各个地方的图上距离,形成以下板书:
图上距离实际距离
学校-少年宫4厘米?米
学校-体育场3.5厘米?米
学校-市民广场2.5厘米?米
学校-火车站7厘米?米
多种角度理解比例尺的意思:图上距离1厘米表示实际距离600米;图上距离1厘米表示实际距离60000厘米;……
解答:在多种书写形式的基础上,体会用“图上距离1厘米表示实际距离600米”的优越性。沟通和正比例之间的联系。
⑸谈谈本节课的收获。
比和比例教学设计 篇3
教学目标:
1、知识与能力目标:在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
2、过程与方法目标:通过在探索比例的意义和基本性质的过程中,进一步发展自己的合情推理能力。
3、情感态度价值观:通过自主学习,经历探究的过程,体验成功的快乐。
教学重难点:
教学重点:
理解比例的意义和基本性质。
教学难点:
应用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。教学过程:
师生问好!
师:课前我们先进行一组口算练习,下面请##同学上台主持。
一、求比值
3 : 8= 2 : 6= 4 : 4= 9 : 3= 8 : 24=
5 : 20= 8.8 : 1.1= 16 : 96=
二、化简比
4 : 5= 2 : 20=
32 : 4= 4 : 44=
15 : 25= 10 : 80=
师:看来同学们口算的都比较准确,昨天我们共同交流了学习目标,大家进行了自主学习,下面请同学们在小组内对学自主学习中的知识链接部分
(小组活动)
师:知识链接的内容是上学期我们学过的有关“比”的知识,今天我们要学的知识,也和“比”有密切的联系,看大屏幕,在山东半岛的东南端有一座啤酒飘香的城市青岛,而青岛啤酒更是闻名中外,这节课我们就一起探究啤酒生产中的数学,这是一辆货车,正在运输啤酒的主要生产原料——大麦芽,这是它2天的运输情况,根据这个表格,你能发现哪些数学信息?
(学生回答)
师:这位同学发现的数学信息真全面,那你能根据这些数学信息提出有关“比”的数学问题吗?
(学生回答)
师:同学们真了不起,提出了这么多问题!
学习数学,我们不仅要善于提问,还要善于观察,下面请同学们在小组内交流一下自主学习的内容,组长分好工,准备汇报展示。
(小组活动)
师:哪个小组的同学愿意来汇报自主学习的内容?
生汇报:我来汇报……其他小组有什么评价或补充吗?
师评价
师:看来同学们学的不错,表示两个比相等的式子叫做比例,根据比例的定义我们知道比需要满足两个条件就可以组成比例:两个比这两个比的比值相等,例如16 :2 = 32 :4,师:2:1与谁能组成比例?
(生答)
师:我真为你们感到骄傲,想到了这么多不同的答案!
组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
说出老师指的这个数是比例的外项还是比例的内项?
(师指生齐说)
师:同学们反应特别快!比例还可以写成分数形式,那这个比我们可以写成
师:请你观察,在这个分数形式的比例里,比例的外、比例的内项是谁?
师:同学们表现特别棒,那老师来考考你!看能不能通过刚才所学的知识解决我会应用。
师:看来同学们学的真不错,其实,在比例的2个外项和2个内项之中隐藏着1个秘密,下面,请同学们以16 :2 = 32 :4为例,研究一下,试试能不能发现这个秘密,为了研究方便,老师给你提供3个温馨提示
(指1生读温馨提示)
(生合作探究)
师:哪个小组的同学愿意上台来把你们的发现跟同学们分享。
(生汇报展示)
师:同学们能通过举例,验证自己的'发现,太厉害了!在比例里,两个外项的积等于两个內项的积,叫做比例的基本性质,观察这个分数形式的比例,可发现交叉相乘的积相等。
师:下面我们就用比例的基本性质解决拓展应用
生
师:同学们真了不起,想出了这么多不同的答案!通过本节课的学习,你有什么收获?
(生谈收获)
师:同学们的收获可真不少!这就是本节课我们要学习的《比例的意义和基本性质》
师:下面我们进行达标检测
(生完成后)
师:哪个小组的同学愿意来汇报自主学习的内容,其他同学拿出红笔,同桌互换。
(小组汇报)
师:全对的同学请举手,组员全对的奖励一颗小印章。
师:同学们这节课表现得真棒,继续努力,好,下课!
比和比例教学设计 篇4
教学目标:
1、在具体的情境中经历比例的形成过程,理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
2、通过自主探索发现比例的基本性质,能运用比例的性质进行判断。
3、通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。
4、通过探索国旗中蕴含的数学知识,渗透爱国主义教育。
教学重点:
理解比例的意义和性质。
教学难点:
应用比例的意义和性质判断两个比能否组成比例。
教学准备:
多媒体课件一套。
教学过程:
一、渗透情感,导入新课
1、媒体出示国旗画面,学生观察,激发爱国情操。
天安门升国旗仪式
校园升旗仪式
教室场景
签约仪式
师:四幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?
2、媒体出示国旗的长和宽,并提出问题。
天安门升国旗仪式:长5米,宽10/3米。
校园升旗仪式:长2.4米,宽1.6米。
教室场景:长60厘米,宽40厘米。
签约仪式:长15厘米,宽10厘米。
师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?
师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?
3、学生探索,发现问题。
师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?
学生自主观察、计算,发现国旗的长和宽的比值相等。
二、认识比例,发现特征
1、引出比例,理解比例的意义。
媒体出示操场上的国旗和教室里国旗长和宽。学生计算出两面国旗的长和宽的比值。
并板书:2.4∶1.6 =3/2
60∶40=3/2
师指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并指出像这样的式子叫比例。
并板书:2.4∶1.6 =60∶40
2、认识比例,知道比例各项的名称。
⑴学生照样子利用主题图仿写一个比例,并说出自己是怎样写出来的。
⑵学生尝试说说什么叫比例。
⑶教学比例的'各部分的名称。
自学课本第34页的第一段话,初步认识比例各项的名称。
出示其中一个比例,指出比例各部分的名称。
学生说说自己写的比例的各项的名称。
⑷教学比例的另一种写法,学生尝试将自己写的比例换一种写法。
⑸判断下列几个比能不能组成比例。
媒体出示,学生判断并说出理由。
下面哪组中的两个比可以组成比例,把组成的比例写出来。
⑴6∶10和9∶15 ⑵20∶5和1∶4
⑶1/2∶1/3和6∶4 ⑷0.6∶0.2和3/4∶1/4
⑹思考:比和比例有什么联系和区别?
学生自主思考,集体交流,了解比例和比的联系和区别。
3、自主练习,发现比例的基本性质。
⑴媒体出示
8∶4=()∶() 15:10=()∶4 12∶()=()∶5
媒体依次出示三道题,学生独立完成并思考:为什么这样填?你有其它的发现吗?
⑵师提出问题:在一个比例中,它们项有什么特点?
⑶学生观察以上式子,自主思考,尝试发现比例的基本性质。
⑷集体交流,发现性质。
学生自主交流,发现:在比例里,两个外项的积等于两个内项的积。
⑸观察自己写的其它几个比例,验证发现。
⑹小结性质
学生尝试用完整的数学语言说一说自己的发现。
媒体出示学生的发现,教师指出这就是比例的基本性质。
三、巩固练习,提高认识
1、基本练习
判断,媒体出示
应用比例的基本性质,判断下面哪组中的两个比可以组成比例
⑴6∶3和8∶5 ⑵0.2∶2.5和4∶50
⑶1/3∶1/6和1/2∶1/4 ⑷1.2∶3/4和4/5∶5
2、拓展练习。
比一比,谁写得多。
在1、2、3、4、5、6、7、8、9这九个数中,任选四个数组成比例,并说说是怎样写出来的。
四、总结全课,升华认识
学生回顾全课,说说比例的意义和基本性质。
板书设计:
比例的意义和基本性质
2.4∶1.6 =3/2
60∶40=3/2
比和比例教学设计 篇5
素质教育目标
(一)知识教学点
1.使学生理解掌握比例的意义和基本性质。
2.认识比例的各部分的名称。
(二)能力训练点
1.使学生学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。
2.培养学生的观察能力、判断能力。
(三)德育渗透点
对学生进一步渗透辩证唯物主义观点的启蒙教育。
教学重点:
比例的意义和基本性质。
教学难点:
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
教具学具准备:
小黑板、投影片、投影仪。
教学步骤
一、铺垫孕伏
教师出示复习题,回忆有关比的知识。
1.什么叫做比?
2.什么叫做比值?
3.求下面各比的比值:
4.上面哪些比的比值相等?
学生回答后,师说:4.5∶2.7和10∶6这两个比的比值相等,也就是说这两个比是相等的,因此它们可以用等号连接。(板书:4.5∶2.7=10∶6)
二、探究新知
1.比例的意义。
出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
从上表中可以看到,这辆汽车,
第一次所行驶的路程和时间的比是______;
第二次所行驶的路程和时间的比是______。
这两个比的比值各是多少?它们有什么关系?
(1)教师引导学生对上面的问题一一解答。使学生清楚地看到这两个比的比值都是40,所以这两个比相等。因此就可以写成这样的等式
(2)由教师告诉学生:象4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例。(板书课题:比例的意义)
师问:什么叫做比例:组成比例的关键是什么?
生答:表示两个比相等的式子叫做比例。(板书)
引导学生议论、交流后板书:表示两个比相等的式子叫做比例。(在“两个比相等”下边划“”。)
(3)做一做
下面哪组中的两个比可以组成比例?把组成的'比例写出来。
①6∶10和9∶15
②20∶5和1∶4
第①题由教师引导学生完成,思路如下:
所以:6∶10=9∶15
其余各题分组讨论后由学生独立完成。
(4)填空
①如果两个比的比值相等,那么这两个比就()比例。
②一个比例,等号左边的比和等号右边的比一定是()的。
2.比例的基本性质。
(1)师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。(边叙述边板书如下)
(2)让学生看下面这些比例,说出它的外项和内项是多少?
4.5∶2.7=10∶6
6∶10=9∶15
(3)让学生计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?
以80∶2=200∶5为例,指名来说明。(师边板书如下)
外项积是:80×5=400
内项积是:2×200=400
80×5=2×200
(4)由学生自己任选两三个比例,计算出它的外项积和内项积。从两个乘积的关系使学生进一步认识到,在每个比例里,两个外项的积都等于两个内项的积。
(5)由教师明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(板书)
(板书课题:加上“和基本性质”,使课题完整。)
(6)想一想:如果把比例写成分数形式,等号两端的分子和分母分别交*相乘的积有什么关系?为什么?
指名回答后,师板书:
(7)做一做
应用比例的基本性质,判断下面哪一组中的两个比可以组成比例。
6∶3和8∶50.2∶2.5和4∶50
3.阅读课本第9、10页的内容并填空。
三、巩固发展
1.说一说比和比例有什么区别。
讨论后指名说明:
比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四个项。
2.在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()×()=()×()。
3.先应用比例的意义,再应用比例的基本性质,判断下面哪组中的两个比可以组成比例。
(1)6∶9和9∶12
(2)1.4∶2和7∶10
4.下面的四个数可以组成比例吗?把组成的比例写出来。(能组几个就组几个)
2、3、4和6
四、全课小结
这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组比例。
五、布置作业练习一第3题。
比和比例教学设计 篇6
教学内容:
义务教育课程标准实验教科书数学六年级下册P45练习十的第5—8题
教学目标:
1、使学生学会解比例的方法,会应用比例的基本性质解比例,进一步理解和掌握比例的基本性质。
2、让学生在经历探究的过程中,体验学习数学的快乐。
教学重点:
学会解比例。
教学难点:
掌握解比例的书写格式。
设计理念:
在本课时的设计中,引导学生根据按比例放大图形,把相关数据组成比例,用未知数X来表示比例中的未知项,列出比例式。
在解比例的教学设计上,重点利用旧知的迁移,通过学生主动探索新知与旧知的联系,在比较分析中,把握规律,掌握解比例的方法。
教学步骤
教师活动学生活动
一、练习引入
1、小练笔:
在()里填上合适的数。
5:4=():12
4:()=():6
2、教师:前面我们学习了一些比例的知识,谁能说一说怎样填空的?
3、比例的基本性质是什么?这节课我们还要继续学习有关比例的知识。学生练习
学生回顾比例的基本性质
二、探索新知
出示例5,前面我们学习过图形的放大与缩小,李明把照片按比例放大,放大后长是13.5厘米,你能求他的宽吗?
(1)读题审题,理解题意
老师帮助学生理解题意。提问:怎样理解“把照片按比例放大”这句话?引导学生理解放大前后的相关线段的长度是可以组成比例
(2)引导分析,写出比例
如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?引导学生写出含有未知数的比例式。
师介绍:“像上面这样求比例中的未知项,叫做解比例。
(3)找到依据,变形解答
讨论:怎样解比例?根据是什么?
思考:“根据比例的.基本性质可以把比例变成什么形式?”
教师板书:6x=13.5×4。“这变成了什么?”(方程。)
教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。
(4)、板书过程,总结思路
师生把解比例的过程完整地写出来。指名板书。
师问:第一步计算的依据是什么?
师生总结解比例的过程。
提问:“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?”(先根据比例的基本性质把比例变成方程。再根据以前学过的解方程的方法求解。)
(5)、练习提高,再说思路
做“试一试”,学生独立完成,再说说解题思路。
学生读题,分析题意
学生写出含有未知数的比例式
学生小组交流,大组汇报
学生交流总结思路:在解比例的过程中第一步是关键,是根据比例的基本性质把比例变成方程。下面和以前学习的解方程的方法一样。
学生独立练习,小组说明思路。
三、巩固练习
1、做“练一练”
2、做练习十第6、7题。
3、做练习十第8题
学生先说说按比例“缩小或放大“的含义。再列出相应的比例式并求解。
学生独立审题并解题。讲评时重点指导学生解决第(2)问。
四、比较提高。
1、通过本课的学习,你有哪些收获?
2、把你掌握的解比例的方法在小组里介绍一下,并在大组交流。
五、作业练习九第5、6题。
比和比例教学设计 篇7
一、教学目标
知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。
过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。
态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。
二、教学重点难点
重点: 理解比例的意义和基本性质。
难点:判断两个比是否成比例。
三、教学过程设计
(一)创设情境,提出问题
1. 复习导入:
(1)什么叫做比?
两个数相除又叫做两个数的比。
(2)什么叫做比值?
比的前项除以比的后项所得商,叫做比值。
(3)求下面各比的比值:
12:16= 4、5:2、7= 10:6=
谈话:今天我们要学的知识也和比有着密切的关系。
2、创设情境,提出问题。
谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学
出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。
这是它两天的运输情况:
一辆货车运输大麦芽情况
第一天 第二天
运输次数 2 4
运输量(吨) 16 32
根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。
谈话:谁来交流?跟大家说一下你的问题是什么?
学生可能出现以下的问题:
货车第一天的运输量与运输次数的比是多少? (16 : 2)
货车第二天的运输量与运输次数的比是多少?(32 :4)
货车第二天的运输量与第一天运输量的比是多少?(32 :16)
(师根据学生的回答,将答案一一贴或写于黑板)
2 :16; 4 :32; 16 :2; 32 :4;
16 :32; 2 :4; 32 :16; 4 :2。
1、认识比例及各部分名称。
谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)
思考:这个比值所表示的实际意义是什么?(每次的运输量)
既然它们的比值相等,那我们可以用什么符号将两个比连接起来?
学生用等号连接,并请学生把这个式子读一下。
试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)
介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。
学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。
自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)
2、比和比例有什么区别?
比
4︰6
比例
2︰3=4︰6
3.判断下面两个比能否组成比例?
6∶9 和 9∶12
总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。
4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?
那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!
5、学生先独立思考,再小组交流,探究规律。
出示研究方案:
①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。
②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。
③通过以上研究,你发现了什么?
6、全班交流。
(1)哪个小组愿意将你们的发现与大家分享?
(2)还有其他发现吗?
(3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?
7、验证发现,共享成功。
师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的`比例都是两个外项的积等于两个内项的积。(学生独立验证)
8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。
9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。
10、比例的基本性质的应用:
应用比例的基本性质,判断下面两个比能不能组成比例.
6∶3 和 8∶5
方法:a、先假设这两个比能组成比例
b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。
c、根据比例的基本性质判断组成的比例是否正确。
(二)自主练习,拓展提升
1、判断下面每组中两个比能否组成比例?
1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5
让学生根据比例的意义进行判断,教师结合回答板书:
1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5
2、连线:自主练习第3题。
3、填空:自主练习第6题。
4、自主练习第10题:
2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5
5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。
2、3、4 和 6
因为 2 × 6 = 3 × 4 所以这四个数可以组成比例
2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4
2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4
练习时,给学生充足的时间让学生独立完成,然后交流沟通。
(三)回顾总结
在这节课中你又有什么新的收获?
比和比例教学设计 篇8
教学目标:
1、理解和掌握比例的意义。
2、了解比和比例的区别与联系。
2、能用比例的意义判断两个比能否组成比例。
教学重难点:
1、认识比例,理解比例的意义。
2、在已有知识的基础上,结合实例引出新的知识。
教具准备:
情景图、多媒体课件、习题卡。
教学过程:
一、导入
出示课题:比例
看到课题你想到了以前学过的什么知识?(生1,生2等回答)
我们已经了解了比的这些知识,请做下面练习。
求下面各比的比值。
18:453:52.7:4.5
求完比值你觉得哪些比有联系?
【设计意图:通过复习比单关的有关知识。唤起学生对已有知识的回忆,为新知的学习做好准备。】
“例”在汉语词典里的解释为符合某种条件。今天这两个比的比值一样,能不能用等号连接呢?
师:相机板书:3:5=2.7=4.5?
今天我们将深入学习比例的意义,看到课题你想了解什么知识呢?
板书完整课题:比例的意义
二、揭题示标。
预设:生:1、比例的意义是什么?
生:2、比例的意义有什么作用?
(师趁机板书在黑板右上角)
【设计意图:通过让学生读课题,提问题,明确本节课的学习目标,做到有的放矢。同时培养了学生的问题意识。】
本节课我们就来完成这两个目标:
三、自主探索
出示:中华人民共和国国旗国旗是我们中华民族的标志和象征,神圣不可侵犯,你在什么地方见过国旗?
【设计意图:对学生同时进行思想品德教育和爱国教育】
生各抒己见。
你知道下面这些国旗的长和宽是多少吗?它们有大有小,都符合要求吗?今天我们一起来探讨。
自学指导:
1、请每位同学任选两面国旗,分别计算出它们长与宽的比值和宽与长的比值。
2、发现了什么有趣的现象?
3、把你的发现尝试用算式写下来。
(5分钟后,期待你精彩的分享)
【设计意图:充分利用教材中的主题图设计教学情景,设置悬念,国旗为什么形状相似却大小不一,这其中的奥秘何在?不仅激发了学生的学习兴趣,更能让学生通过形象的感受大小不同的国旗的变化。从而直观地感受比例的本质内涵。】
(二)自学
学生认真看书自学,教师巡视,督促人人都在认真地思考。
(三)汇报分享
谁愿意把你的结果和大家分享?师相机板书
(1)15:2.4=10:1.6(2)60:15=40:10(3)…(4)…
原来在国旗中有这么多的相等关系。国旗的缩放是按比例进行的。
我们把比值相等的两个比用等号连起来。这样的式子就是比例。请同学读数学课本,40页,用笔勾画出重点词句,并读一读。
【设计意图:放手,让学生计算出每面国旗长和宽的比值。从中发现它们的比值相等,可以用等号连起来,自然而然地引出比例,然后让学生阅读课本,初步感受比例的意义】
师:你还能写出两个比组成的`比例吗?先自己选,再在小组里说一说。
生:…
师:你能根据自己的理解说说什么叫做比例吗?先同桌互说,再小组内互相说一说,再指名汇报。
出示“比例的意义”概念
擦去开始板书中的“?”并把比例可用分数形式表示板书出来
【设计意图:这一环节的设计,让学生通过观察,交流,思考等活动,充分感知比例的意义,并用自己的语言说出自己对比例意义的理解】
师:你能说一说组成比例要具备哪些条件吗?
生:…
师:根据你的理解,请看主题图,你还能找出哪些比组成比例?学生先独立思考,再小组合作,交流探究。通过这节课的学习,你找到了设计国旗的奥秘了吗?
生:…
【设计意图:学生概括出比例的意义后,没有就此终止,而是让学生通过小组合作交流,给学生足够的时间空间,让学生进一步探讨。寻找解决问题的有效途径,让学生的数学思维得到提升。通过收集学生写出的比例,不难发现,任意两面国旗的长与宽之比,宽与长之比,长于长之比,宽与宽之比都可以组成比例,国旗的尺寸中就隐含着这个秘密】
四、当堂检测(牛刀小试)
下面各比能组成比例吗?你是怎样判断的?请写出计算过程。
(1)3:7和9:21
(2)15∶3和60∶12
五、当堂训练:
1、把下面的式子进行归类:
(5)72:8=3X3(6)3.6:6=0.6
比:()
比例:()
思考:你快速做出判断的原因是什么?明白了比和比例有什么区别?
2、判断:
(1)、有两个比组成的式子叫做比例。()
(2)、如果两个比可以组成比例,那么这两个比
的比值一定相等。()
(3)、比值相等的两个比可以组成比例。()
(4)、0.1∶0.3与2∶6能组成比例。()
(5)、组成比例的两个比一定是最简的整数比.()
六、拓展提升(思绪飞扬)
1、写出比值是7的两个比,并组成比例。
2、12的因数有(),从12的因数中挑选4个数组成比例是()。
3、有两种蜂蜜水:第一种,用2杯蜂蜜和10杯水调配制而成;第二种,用3杯蜂蜜和15杯水调配制而成。那种更甜呢?你能用今天所学知识判断出来吗?
设计意图:通过设计不同层次的练习,让学生掌握组成比例的思路和方法,使不同层次的学生思维都得到发展,从而加深对比例的意义的理解和掌握
七、全课总结
今天这节课你有什么收获?
八、课堂作业
第43页第2、3题。
九、抽查清。(每组4号同学完成)
判断下面每组中的两个比能不能组成比例。
30:5和48:812:0.4和3:5
十、板书设计
比例的意义
表示两个比相等的式子叫做比例。
比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
十一、教学反思:
本节课属于概念教学,分五个环节设计教学,利用十五个问题贯穿整节课,以问导学,以问导疑,以问导思,以问导获,注重培养了学生的各种能力,全课体现了以下几个特点:
1.关注了学生已有的知识与经验。课的开始从引导学生复习比的知识入手,通过求比值相等的两个比,可以用“=”连起来,自然而然的引出比例,这样的设计符合学生的认知规律。
2.注重数学知识与生活的联系。数学来源于生活,更应用与生活,本节课从从学生熟悉的国旗引入比例,在求大小不同的国旗的长与宽的比值中学习比例的意义,通过观察、探讨大大小小的国旗的长与宽、宽与长、长与长、宽与宽的比值关系中,加深学生对比和比例的关系,比例意义的理解和掌握。最后通过照片,让学生感受到数学知识离不开生活,生活中处处有数学知识。
3.课堂采用以问导学的策略,用十五个问题贯穿了整节课,以问题引导学生思考,促进学生思考,用问题激发学生的兴趣,用问题控制学生的注意力,用问题拓展学生的思路,用提问强化学生的认知,用问题促进师生之间的交往互动。培养了学生的问题意识,培养学生的自学能力、思维能力、观察能力、表达能力等,从而提高学生解决问题的能力。
4.采用探究式的学习方式。对新课的教学,教师不是把现成的答案强加于学生,而是让学生通过观察、计算、思考、阅读等方式初步感知新知,再进一步提问“你能根据自己的理解说说什么叫做比例吗,”、“你能说一说组成比例要具备哪些条件吗,”、“你还能找出那些比组成比例,”等引导学生思考、探究,学生在合作交流中产生思维碰撞,这样,学生的体验和感受都很深刻。
5.设计了多种形式的练习,升华了学生的思维。练习是巩固新知、发展思维的有效手段。思维目标的实现需要通过一定的练习来完成,本节课设计了六种不同层次、不同功能的练习,有利于学生对比例意义的巩固,有利于提高学生思维的敏捷性,有利于培养学生解决生活中实际问题的能力和习惯。
比和比例教学设计 篇9
教学内容:
人教版新课标小学数学六年级下册《比例的意义和基本性质》P32—34页以及相应的“做一做”,练习六第5题.
教学目标:
知识目标:
学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。
能力目标:
能应用比例的意义和比例的基本性质正确判断两个比能否组成比例。
情感目标:
激发学生的学习兴趣,引导学生自主参与知识探究的全过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。
教学重点:
理解比例的意义和基本性质.
教学难点:
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.
教学理念:
充分发挥学生的主体作用,让学生自主参与知识探究的全过程,主动构建新知,发展学生思维,培养学生研究数学的能力。
教学准备:
课件
教学过程:
一、激趣导入
1、今天能和在座的同学们一起上课我感到非常高兴,听说同学们都非常聪明、爱动脑筋,课上积极回答问题。今天,我和在座的领导老师们想看一看同学们的表现如何,这节课同学们想不想证明一下自己?
2、请同学们看大屏幕,课件出示P32页四幅图。
二、探究新知
1、比例的意义
师问:
①这四幅图中有什么共同的事物?(齐说)
②这四面国旗出现在什么场合或什么地点?(指生回答)
③这四面国旗的长与宽分别是多少?(指生回答)
④这四面国旗的大小相同吗?
说明:虽然国旗的大小不同,但是,这四面国旗都是按一定的比制作的,那么,我国的国旗法是怎样规定国旗的大小的呢?同学们想不想了解这方面的知识?下面我们就从国旗开始,新知识的学习。
⑤请同学们分别写出这四面国旗长与宽的比并求出比值。(指生回答师板书)
⑥请同学们看我们写出的国旗长与宽的比及求出的比值,谁发现了我国国旗法是怎样规定国旗的大小的?(国旗法规定:国旗的长与宽的比值是3/2也可以说成国旗长与宽的比是3:2)
师问:
①现在我们选取其中的两个比,如:2、4:1、6和60:40。这两个比的比值都是3/2相等。那么这两个比是什么关系?生:相等。
那么我们能用什么符号可以把它们连接成等式?生:等号
谁来用等号把这两个比写成等式?师板书:2、4:1、6=60:40
②如果用比的分数形式来表示这个式子也可写成:或2、4/1、6=60/40
③根据我们写出的四面国旗长与宽的比及比值,你还能找出这样的两个比并用“=”连接成等式吗?(指生回答并说说是怎样找到这两个比相等的?)
师小结:请同学们观察板书的等式,揭示:数学中规定,像这样的式子就叫做比例。(板书:比例)
师:观察这些式子,你能说说什么样的式子叫比例吗?(找3名同学回答)
师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。
出示板书:表示两个比相等的式子叫做比例。这就是今天我们学习的第一个新知识。板书:比例的意义
问题:
①从比例的意义可以知道,比例是由几个比组成的?这两个比必须具备什么条件?(板书重点符号)
②判断两个比能不能组成比例,关键要看什么?
③看大屏幕,刚才我们找出的比都是长与宽的比,现在你能找出这四面国旗宽与长的两个比组成比例吗?(指生回答并说说是怎样找到这两个比相等的?)
我们已经了解了比例的意义,下面我来考一考大家:
课件出示P33页做一做1题要求及逐一出示各题,学生回答,教师课件演示。
2、比例各部分名称
师:同学们都知道比的各部分都有自己的名称,那么比例各部分名称叫什么呢?下面请同学们自学P34页前两行及例题。同时思考(课件出示)什么是比例的项?什么是比例的外项?什么是比例的内项?你能举例说明吗?
学生回答上面的问题,教师课件演示。
做一做:指出下面比例的'内项和外项(课件出示)
4、5∶2、7=10∶6240/160=144/96
3、比例的基本性质(课件出示)
观察:2、4∶1、6=60∶40
思考:两个内项和两个外项之间有什么关系?看看你能发现什么?(可以相互讨论)
用下面的比例验证你的发现:
6∶10=9∶158∶2=20∶5
你能用一句话把发现的规律说出来吗?(找3名同学回答)
下面我们计算2、4:1、6=60:40的两个內项积与两个外项积,共同验证一下这三位同学发现的规律对不对?集体计算后师问:这三位同学发现的规律对不对?你们发现这个规律了吗?同学们通过自己的观察、计算、验证发现了数学上一个非常重要的规律,同学们真了不起,同学们发现的这个规律就叫做比例的基本性质。(师出示板书,指生读)在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(这就是今天我们学习的第二个新知识。板书:比例的基本性质)
师:看大屏幕(课件出示)2、4/1、6=60/40
问题:如果把比例写成分数形式,根据比例的基本性质我们应该怎样计算两个内项的积和两个外项的积?
指生回答师小结:把比例写成分数形式,比例的基本性质是不是可以理解为:等号两边的分子和分母分别交叉相乘,积相等。师课件
演示2、4/1、6=60/40→2、4X40=1、6X60
4、我们已经理解了比例的基本性质,那么你能根据比例的基本性质来判断两个比是否可以组成比例吗?
课件出示:你能根据比例的基本性质判断10:2与2、5:0、5是否可以组成比例?
讲解时可启发:如果这两个比能组成比例,哪两个数是內项,,哪两个数是外项,那么根据比例的基本性质,能否计算两个外项的积和两个内项的积。
因为10X0、5=52X2、5=5,所以假设成立,10:2与2、5:0、5能组成比例,即10:2=2、5:0、5
5、你会用比例的基本性质判断两个比是否可以组成比例吗?课件出示P34页做一做题目要求及逐一出示各题,学生回答,教师课件演示
6、师:学习到这里,我们学习了几种判断两个比能否组成比例的方法?
生:两种。一种是根据比例的意义,看两个比的比值是否相等;另一种是根据比例的基本性质,看两个外项和两个內项的积是否相等。
三、巩固新知(课件出示)
做一做,相信你能行!
1、判断
①10∶5=2是比例。()
②在比例里,两个外项的积与两个內项的积的差是O、()
2、填空
①在一个比例中,两个外项互为倒数,其中一个內项是1/9,则另一个內项是()
②2:9=8:()
3、用你喜欢的方法判断下面每组中的两个比是否可以组成比例(P37页5题,逐一出示各题,学生回答,教师课件演示)
四、通过这节课的学习,说说你有什么收获或学到了那些知识?
五、课后作业:搜集生活中的比例,看看比例在生活中的作用?
比和比例教学设计 篇10
【教学内容】
教科书第66~67页例2、例3及相关练习。
【教学目标】
1.通过对分数基本性质的记忆和沟通分数与比、除法之间的联系,理解比的基本性质。
2.能够运用比的基本性质把比化成最简单的整数比。
3.渗透转化的数学思想,培养学生的抽象概括能力,并使学生认识事物之间都是存在内在联系的。
【教学重、难点】
理解比的基本性质,并运用比的基本性质把比化成最简单的整数比。
【教学过程】
一、复习准备
1.求比值。
8∶4=48∶12=16∶8=
24∶18=40∶16=15∶5=
.准备题。
(1)找出下列分数中相等的分数,并说说你是根据什么找的?(略)
学生找出后,教师作引导性提问:它们为什么相等?谁能完整地说出分数的基本性质?
(2)在()内填上适当的数。
3÷4 =( )4=( )40= ( )÷12 =0.75
58=5:( )
6:7 =( )7=( )7
9:( )=( ):16
教师:由上面这两组题你想到了什么?
小结:根据分数与除法的关系,除法与比的关系,比的前项相当于分数的分子,比的后项相当于分数的分母,比值相当于分数值。
比也可以写成分数的形式,如5:8可以写成5/8。
二、学习新知
1.出示例2:观察下面的比是怎样变化的。
200/240=20/24=10/12=5/6
↓ ↓↓↓
200∶240=20∶24=10∶12=5∶6
独立观察,思考:比的前项、后项发生了什么变化?
分组讨论:看看上面的这个例子,想一想:在比中有什么样的规律?
学生进行小组总结后,小组间交流汇报。通过交流总结出比的基本性质。
2.概括比的基本性质:比的前项和后项同时乘以或者同时除以相同的数(0除外),比值不变。
3.应用比的基本性质化简比。
(1)让学生在例2中找出你认为最简单的整数比,明确什么是最简整数比。
(2)出示例3:化简下面各比。
①15∶12②14∶56
③30∶60∶120
师生共同观察,找出各组比的特征,然后进行分析、化简。
第①题:这个比的前项和后项都是整数,如何化简?(用比的前、后项分别除以它们的最大公约数,直到前后项是互质数为止)
第②题:这个比的前项和后项都是什么数,怎样才能把它们转化成整数比?(学生观察分析后,独立探索化简的`方法,再交流优化的化简方法)
学生交流完后,教师进一步作小结:比的前项和后项都是分数的,一般把比的前项和后项同乘两个分数分母的最小公倍数,把它们转化成两个整数比,再进一步化简。
第③题:这个比有什么特点?(三个数的连比)又如何化简呢?化简两个整数比的方法对于化简三个整数连比是否适用呢?
学生讨论后尝试化简,填在书上。
教师提示:在三个数的连比中,比号不表示除号。
三、巩固练习
1.用已经学过的知识试着将第67页“试一试”中的比化成最简整数比。
学生化简后交流反馈,说说方法。师生共同小结方法及注意点:应用比的基本性质把整数比、小数比、分数比化成最简单的整数比时,第一步一般都化成整数比,接着再利用比的基本性质把比的前、后项同除以它们的最大公约数,使比的前、后项成为互质数。
2.出示练习题:化简下面各比,并求出比值。
比最简单的整数比比值
9:54
34∶67
5.8∶2.9
200∶150∶26
讨论:化简比与求比值有什么区别?(求比值就是求“商”,得到的是一个数,可以写成分数、小数,有时也能写成整数。而化简比则是为了得到一个最简单的整数比,可以写成真分数或假分数的形式,但是不能写成带分数、小数或整数)
3.学生独立完成练习十五第3题,完成后用投影仪集体订正。
4.拓展练习。
(1)六(3)班男生人数是女生的1.2倍,男、女生人数的比是( ),男生和全班人数的比是( ),女生和全班人数的比是( )。
(2)一个长方形周长是30厘米,长与宽的比是7∶3,求长与宽各是多少厘米?
四、课堂小结
通过今天的学习,你又掌握了哪些知识?什么是比的基本性质?应用比的基本性质如何化简比?
比和比例教学设计 篇11
教学目标:
⑴使学生进一步理解比的意义和基本性质,理解比与分数、除法的关系,能根据要求求比值、化简比;理解比例的意义和基本性质,会解比例;认识成正比例和反比例的量,感受表示数量关系及其变化规律的不同数学模型;能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。
⑵通过量一量等操作活动,吸引学生积极主动参与,感受比的应用价值,在活动中获得一些新的认识;
⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。
教学重点:
进一步理解比和比例的一些知识。
教学难点:
感受比的应用价值,在活动中获得一些新的认识。
教学流程:
一、自主学习,完成练习。
⑴揭示课题。
教师谈话:今天我们复习《正比例和反比例》。板书课题——“正比例和反比例”。
⑵自主练习。
教师谈话:用5-8分钟的时间阅读课本94页的内容,完成“练习与实践”1-6题,其中“练习与实践”第2题作为课前活动,“练习与实践”第1题本班的男女生人数板书在黑板上,男生24人、女生27人。
学生自主练习,教师巡视。
二、交流讨论,梳理知识。
⑴整理比的知识。
交流“练习与实践”第1题的答案,并矫正;理解“男生和女生人数的比是8:9”的意思,一般表示男生是女生人数的8/9,男生和女生人数是除法关系;“男生和女生人数的比是8:9”由比24:27化简而来,回忆比的.基本性质;体会“女生和全班人数的比是9:17”答案由来的多种途径。
⑵感受生活中的比例。
交流头长和身高的比,让多名学生将自己头长和身高的比和比值板书在黑板上;指导学生取近似值,整理答案,再说说自己的发现,比值一般很接近的,感受生活中的比例。
⑶整理比例的知识。
交流“练习与实践”第3题的答案,并矫正;根据写成的比例理解比例的意义,根据图形的放大或缩小沟通比的基本性质和分数基本性质的一致性;根据图形的放大或缩小体会和比例的关系。
⑷整理解比例的知识。
交流“练习与实践”第4题的答案,并矫正;理解比例的基本性质,以及在解比例中运用,掌握解比例的方法。
⑸解决实际问题。
交流“练习与实践”第5题,先说说对表中百分数的理解,交流我国东西部各自的特点;掌握把两个数量的百分数关系改写成比的一般方法,用对应的分数表示前项和后项,再化简。交流“练习与实践”第6题,说说得到两种地砖铺地面积比的思考过程,因为每块地砖的大小是相同的,所以可以转化成块数来写出面积的比;交流问题2的解决过程,体会比的应用。
⑹谈谈本节课的收获。
比和比例教学设计 篇12
教学目标
1.使学生进一步理解比的意义和基本性质以及比与分数、除法的关系;理解比的基本性质与分数的基本性质、商不变的规律内在一致性;理解比例的意义和基本性质。
2.运用比较的方法,有利于学生对所学知识的理解,促进学生对数学知识的灵活运用。
3.能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。
教学重、难点重点:
正确理解正比例、反比例的意义,运用比例的基本性质判断两个比能否组成比例。
难点:
运用比例的知识解决一些简单的实际问题。
课前准备课件。
教学流程设计意图
一、比的知识:
1.举例说说什么是比?什么是比的基本性质?
2.说一说用比的知识可以解决哪些实际问题。
3.完成教科书第83页“练习与实践”。
(1)完成第一题:学生独立数出班上男女生人数,再完成此题。
(2)完成第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。
二、比和分数、除法的联系
出示:a∶b=()÷()=(b≠0)
1.先填空,再说说这样填的根据是什么?
2.说说比的基本性质与分数的基本性质、商不变的规律的联系。
3.练一练:
(1)判断:比的前项和后项都乘或都除以相同的数,比值不变。()
(2)填空:
=()÷()=()∶()
(填好后展示学生不同的结果。)
三、比例的知识
1.什么是比例?
2.比和比例有什么关系?(小组讨论后交流)
3.比例的基本性质是什么?
4.比例的基本性质有什么作用?怎样解比例?
5.练一练:完成教材第83页的`“练习与实践”。
(1)完成第3题:在做第二小题时先让学生估计,再说估计的理由。
估计后再算一算,来验证估计。
(2)完成第3题:解比例,做好后选两题验算一下。
四、完成教材第84页“练习与实践”。
(1)完成第4题:先学生独立做最后交流,第二小题应弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的。换句话说把全国耕地面积看作100份,东部占93份,西部占7份。使学生加深对比与百分数关系的理解。
(2)完成第5题:
第一小题让学生独立得出:深色与浅色地砖铺地面积的
比是20∶40,化简得1∶2。
第二小题这两种地砖铺地面积,让学生利用按比例分配的方法计算。
(3)完成第6题。
五、评价小结:
学了本课你对所学知识有什么新认识?还有什么问题?
通过让学生回忆比和比的基本性质,从而自然进入复习序列,从比到比例。
沟通比、分数和除法的关系,为接下来比较比的基本性质、分数的基本性质、除法商不变的规律奠定基础。
对比和比例进行比较,强化理解,进一步优化知识结构。
复习解比例。
应用比例分配知识解决实际问题。
比和比例教学设计 篇13
教学内容:
义务教育课程标准实验教科书数学六年级下册P43“练一练”和练习十的1~4题
教学目标:
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质。
3、通过自主学习,让学生经历探究的过程,体验数学学习的快乐。
教学重点:
理解并掌握比例的基本性质。
教学难点:
探究发现比例的基本性质。
设计理念:
本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的.问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。
教学步骤教师活动学生活动
一、复习引新
导入新课
1、找找比比:
(判断下面的比,哪些能组成比例?把组成的比例写出来。)
3:518:300.4:0.21.8:0.9
5/8:1/47.5:32:89:27
学生独立完成,重点说说判断过程。
2、今天我们继续研究比例的有关知识。
学生练习
学生回顾判断两个比能否组成比例的方法
二、认识比例
探索规律1、认识比例各部分的名称
(1)介绍“项”:组成比例的四个数,叫做比例的项。
(2)3:5=18:30学生尝试起名。
师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。
3:5=18:30
内项
外项
(3)如果把比例写成分数的形式,你还能指出它的内、外项吗?
出示:3/5=18/30
(4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
2、教学例4
(1)理解题意,信息搜索:
提问:你能根据图中的数据写出比例吗?
(2)、学生写不同比例:
引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。
引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?
(3)、学生探索规律
学生先独立思考,再小组交流,探究规律。(板书:两个外项的积等于两个内项的积。)
(4)、写比例,验证规律:
是不是任意一个比例都有这样的规律?学生任意写一个比例并验证。
(5)、师生归纳比例的基本性质:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
3、思考分数形式的比例3/6=2/4,通过连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交叉相乘,结果相等。
4、练习:“试一试”判断能否组成比例。
出示“3.6:1.8和0.5:0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。
提问:2.6:1.8和0.5:0.25能组成比例吗?根据比例的基本性质,能判断两个比能不能组成比例吗?
学生练习:找出比例中的内项和外项
6:5=36:30
4:7=21:49
学生自主表达,图中有哪些数据信息?
学生独立思考,再小组交流
学生练习:如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成()
学生分析哪两个数是外项,哪两个数是内项。
比较理解比例的基本性质
学生思考后归纳:判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。
三、巩固练习
拓展提高
1、做“练一练”
使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。
2、在()里填上合适的数。
5:3=():6
4:()=():5
3、做练习十第1、2题学生尝试练习后交流讨论
先让学生尝试填写,再交流明确思考方法。
四、全课小结
总结反馈通过今天的学习,你有哪些收获?
把你发现规律的方法介绍给朋友、亲人。
五、课堂作业练习十3、4题
比和比例教学设计 篇14
教学目标:
1、知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。
2、过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。
3、情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。
教学重点:
理解比例的意义,探究比例的基本性质。
教学难点:
探究比例的基本性质和应用意义,会判断两个比能否组成比例。
教学过程:
一、创设情境,引入新课
同学们,五星红旗是中华人民共和国的象征。每当周一升国旗时,我们心中充满了对祖国的热爱和作为一个中国人的自豪。热爱国旗就是热爱祖国,国旗对我们这么重要,你们想不想更多地了解一些国旗的知识呢?
1、出示三幅场景图(见教材第40页主题图)
2、提问,你们知道每一幅图中国旗的长和宽是多少吗?(出示课件)
3谈话:在制作国旗的尺寸的过程中也存在有趣的比。同学们可以算一算这三幅国旗的长和宽之比,并求出比值。
4、汇报,教师依次出示
二、引导探究,明确意义
(一)比例的意义
(1)观察这三组数据,你有什么发现?
(2)看三组数据,能否从中选出两个比组成等式呢?
(3)学生汇报,教师任选其中的板书
(4)师:肯定学生的回答后指出,像这样的等式我们还可以继续写下去。这样两个比相等,我们就可以说这两个比可以组成比例。(出示)这就是比例的意义也是我们今天所要学习的一个重要内容。
(5)引导学生再次理解意义并强调,两个比相等,并让学生说说什么是比例?
(6)试写比例的分数形式。
2、根据意义,判断比例
下面哪组中的两个比可以组成比例?把组成的比例写出来。
(1)学生独立完成。
(2)指名汇报。
(3)师:20:5和1:4为什么不能组成比例?那么你能想办法给20:5找个朋友组成比例吗?想一想,这样的朋友能找几个?你认为找到朋友的共同特点是什么?也就是说要符合什么条件?
小结后强调指出,判断两个比能否组成比例,关键是看它们的比值是否相等。
(二)比例的基本性质
师:我们知道比中两个数分别叫做比的前项和后项。今天我们学习的比例中的四个数也有自己的名字,你们知道它们分别叫什么吗?(和学生介绍内项和外项)。
(1)写出一组比例,让学生指出各部分的名称。
(2)如果把比例写成分数的形式,你能找出它的内项和外项吗?
生独立指出比例的`内项和外项。
1、活动探究总结性质
谈话:比例表示两个比相等的式子,就像除法有商不变的性质一样,比例也有它特有的性质,会是什么呢?我们可以怎样研究?
(1)请你试着写出一些比例:
(2)问题:观察比例式,两个外项与两个内项之间有什么关系?想想、写写、算算,看你有什么发现?(可以提示学生分别算出两个外项和两个内项的和,差,积,商,看看有没有一定的规律)
(3)学生探究,教师巡视,收集资源。
(4)探究:你发现了什么?怎么发现的?
(5)验证:有了这样的发现之后,你有什么问题呢?
(6)可以得出什么?(比例的性质)
(7)提问:如果把比例写成分数的形式,比例的基本性质会出现什么形式呢?
2、运用性质
(1)提问:判断比例是否成立,你是根据什么判断的?有几个方法?
(2)出示一些练习,判断哪一组中的两个比可以组成比例?
三、归纳总结,交流收获
1、本节课学习了什么?
比和比例教学设计 篇15
教学目标:
1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。
2.引导学生揭示知识间的联系,培养学生分析判断、推理能力
教学流程:
一、复习铺垫,猜想引入
师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?
2.猜想
师:今天我们要学习一种新的比例关系反比例关系。(板书:反比例)
师:从字面上看反比例与正比例会是怎样的关系?
生:相反的。
师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?
生:(略)
反思:根据学生认知新事物大多由猜而起的规律,从概念的名称正、反两宇为切入点,引导学生顾名思义,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。
二、提供材料,组织研究
1.探究反比例的意义
师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。
(1)表中有哪两个相关联的量?
(2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?
2.小组讨论、交流。(教师巡回查看,并做适当指导。)
3.汇报研究结果
(在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)
生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。
生2:已行路程十剩下路程=总路程(一定)。
您现在正在阅读的'人教版《反比例的意义》教学设计及反思文章内容由收集!
生3:我认为第一个同学的说法不准确,应该换成增加和减小
(最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)
师:表2和表3中两个量的变化规律有哪些共性?(生答略。)
师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)
师:如果用字母A和B表示两个相关联的量,用C表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]
反思:教材中两个例题是典型的反比例关系,但问题过瘦过小,思路过于狭窄,虽然学生易懂,但容易造成知其然,而不知其所以然。通过增加表3,更利于学生发现长宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表1、表4,把正比例关系、反比例关系、与反比例雷同(和一定)的情况混合在一起,给学生提供了甄别问题的机会。
4.做一做(略)
5.学习例6
师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)
三、巩固练习,拓展应用
1.基本练习。(略)
2.拓展应用。
师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)
交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的正方形的边长边长=面积(一定),边长和边长成反比例的例子引起了学生们的争论。教师没有马上做判断,而是问学生:能说出你的理由吗?有的学生说:因为乘积一定,所以边长和边长成反比例关系。对他的意见有的同学点头称是,而有的同学却摇头忽然,一名同学像发现新大陆一样大声叫起来:不对!边长不随着边长的扩大而缩小!这是一种量!一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:边长4=正方形的周长(一定),边长和4成反比例。话音刚落,学生们就齐喊起来:不对!边长和4不是相关联的两个量。
反思:通过你能举一个反比例的例子吗?这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。
3.综合练习
四、总结
反思:
《数学课程标准》中指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。
比和比例教学设计 篇16
教学目标:
1、理解比例的意义,认识比例各部分名称;能利用观察—猜想—验证的方法得出比例的基本性质。
2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。
3、使学生在自主探究、合作交流的活动中,进一步体验数学学习的乐趣。
教学重点:
理解比例的意义和基本性质,能正确判断两个比能否组成比例。
教学难点:
自主探究比例的基本性质。
教学过程:
一、导入
1、谈话
师:同学们,上学期我们学过有关比的知识,谁能说说学过比的哪些知识?
生1:比的意义。
生2:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
生3:比的前项除以后项,所得的商就是比值。
……
(评析:简短的几句谈话,引起了学生对已有知识的回忆,让学生“温故”而“启新”。)
二、合作探究,学习新知
1、比例的意义
师:今天我们继续学习有关比的知识。昨天大家预习了,谁来说说今天学习什么?
生:比例?(书:课题比例)
师:看到这个课题你想知道什么?
(预设:1、什么叫比例?2、比例各部分名称?3、比例的基本性质?4、比和比例有什么区别?)
生:什么叫比例呢?
生:(书)表示两个比相等的式子叫做比例。
师:你怎样理解这句话的意思?可以举例说明。(如果学生举不出例子,我就从比例的意义上去引导,表示两个比相等,你能写出两个比吗?怎样知道这两个比是否相等呢?指着学生举的例子说,像这样的两个比相等的式子就是比例)
师:你也能举出一个这样的例子,对吗?请你举出一个这样的例子,再给同桌说说为什么能组成比例?
(老师巡视时可以提示学生有的孩子写出了小数、分数形式的比例很好。生汇报)师板书。
师:通过以上练习,你认为这句话中哪些词最重要?为什么?
生1:两个比,不是一个比
生2:相等,这个比必须相等
生3:式子,不是两个等式是式子。
师:(投影出示)请你利用比例的意义,判断下面的比能否组成比例?
(1)0、8:0、3和40:15
(2)2/5:1/5和0、8:0、4
(3)8:2和15/2:15
(4)3/18和4/24
(学生独立判断,师巡视指导,然后汇报)
师:先说能否组成比例,再说明理由,
生:0、8:0、3和40:15能组成比例,因为0、8:0、3和40:15的比值都是8/3,所以0、8:0、3和40:15能组成比例。
同理教学:(2)2/5:1/5和0、8:0、4
(3)8:2和15/2:15不能组成比例,因为8:2和15/2:15的比值不相等,所以8:2和15/2:15不能组成比例。
师:怎样改能使它组成比例呢?
生:4:8=15/2:15或8:2=15:15/4
同理教学(4)3/18和4/24
师:像3/18和4/24是比例吗?
师:分数形式的比例怎么读?你能把这个(学生写的整数比例)改写成分数形式吗?请读一读?
2、认识比例各部分的名称。
师:我们在学比的时候知道了比有前项和后项,而组成比例的这些数也有自己的名字。谁能来说一说?
生:组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。(师板书)
师:请你指出在这个比例中(16:2=32:4),哪是它的内项?哪是它的外项?
生:2和32是它的内项,16和4是它的外项。
师:请同学们快速抢答老师指的数是比例的外向还是内项。
生:(激烈抢答):外项……
师:同学们反应真快,分数的形式中哪些是比例的项呢?
生:2和32是内项,16和4是外项。
师:老师指分数比例学生抢答。
3、探索比例的基本性质。
师:同学们学得真不错,敢不敢和老师来个比赛?
生:(兴趣高涨):敢!
师:好,请两位同学们各说一个比,我们共同来判断能否组成比例,看谁判断的快?
师:谁来。
生1:4:5,生2:8:9不能组成比例。
生:对。
师:服气吗?不服气咱们再来一次,
生1:1、2:1、8,生2:3:5
师:不能。对吗?
生:对。
师:老师又赢了,这回服气了吧。(学生点头)
师:其实你们表现的很不错,只不过老师是用了另一种方法,才能做得又对又快,想知道是什么方法吗?
生:想。
师:其实秘密就藏在比例的两个内项和两个外项之中,就请你以16:2和32:4为例,研究一下,试试能不能发现这个秘密!老师给你们两个温馨提示:(课件出示:温馨提示:
1、可以通过观察、算一算的方法进行研究。
2、你能得出什么结论?)
师:现在请将你的发现在小组里交流一下,看看大家是否同意。
(学生讨论)
师:哪个小组愿意将你们的发现与大家分享?
生1:我们组发现16和32是倍数关系,2和4也是倍数关系,所以我们想,在比例里,一个外项和一个内项之间都存在倍数关系。
师:有道理,不错,还有其他发现吗?
生2:我们组发现16×4=6432×2=64,也就是两个外项的积等于两个内项的积。
师:你能把这个计算过程写在黑板上吗?(学生板书:16×4=64)
师:这是两个外项的积,(师板书:两个外项的积)
(学生板书:16×4=64)
师:这是两个内项的积,(师板书:两个内项的积)
师:你的意思是:两个外项的积等于两个内项的积(师板书:=)是吗?
师:其他组的同学同意他们这个结论吗?
生:同意。
(以上环节,灵活掌握,如果有的学生能直接用比例的基本性质判断,就直接问:你怎么算得那么快?生:我用两个外项的积=两个内项的积,判断它们能组成比例。是不是所有的.比例两个外项的积=两个内项的积呢?怎么验证?)
师:真的所有的比例都是这样吗?怎么验证?
生:可以多举几个例子看看。
师:这是个好建议,那快点行动吧。(学生独立验证)
生:我同意,因为我用的是2:16=4:32来验证,我发现32×2=64,16×4=64、
生:我也同意,我用的是10:5=2:1,来验证,我发现10×1=10,2×5=10、
师:有没有同学举得例子不符合这个结论呢?那也就是说,所有的比例都是两个外项的积等于两个内项的积。其实这也正是比例的基本性质。同学们太厉害了。能通过举例来验证自己的发现。
4、比和比例的区别
师:我们以前学习的比,和今天学习的比例有什么不同呢?请六人小组说一说。(师巡视)
师:哪一组的代表来说一说。
生:比和比例的意义不同?两个数相除又叫做两个数的比。表示两个比相等的式子叫做比例。
生:比和比例形式不同。比是一个比,比例是两个比。
生:性质不同。比的前项和后项同时乘以或除以同一个数(0除外)比值不变。在比例里,两外项的积等于两内项的积。
5、总结:今天学习了什么?学生看着板书说,请同学们默记两遍。
三、巩固练习
1、下面每组比能组成比例吗?
(1)6:3和8:5(2)20:5和1:4
(3)3/4:1/8和18:3(4)18:12和30:20
生1:第(1)个不能组成比例,因为6×5=30,3×8=24,不相等。
生2:第(2)个不能组成比例,因为20×4=100,5×1=5,不相等。
师:怎样改一下使它们能组成比例?
生3:把20:5改成5:20,这样5×4=20,20×1=20,能组成比例。
生4:还可以把1:4改成4:1,也能组成比例。
生5:第(3)个可以组成比例,因为3/4×3=1/8×18。
生6:第(4)个可以组成比例,因为18×20=360,12×30=360。
师:看来要判断两个比能否组成比例,除了可以根据两个比的比值是否相等外,还可以根据比例的基本性质来进行判断。
2、填一填。
2:1=4:()1、4:2=():3
3/5:1/2=6:()5:()=():6
师:最后一题还有没有别的填法?
生1:5:(1)=(30):6
生2:5:(30)=(1):6
生3:5:(2)=(15):6
生4:5:(15)=(2):6
师:怎么会有这么多种不同的填法?
生:两个外项的积是30,根据比例的基本性质,只要两个内项的积也是30就可以了。
3、用2、8、5、20四个数组成比例。
师:你能用这四个数组成比例吗?
师:最多可以写出几种?怎样写能够做到既不重复也不遗漏?
生:2和20做外项,8和5做内项时有4种:
2:8=5:202:5=8:20
20:8=5:220:5=8:2
8和5做外项,2和20做内项时也有4种:
8:2=20:58:20=2:5
5:2=20:85:20=2:8
四、课堂总结
师:说一说,这节课你有哪些收获?
生1:知道了比例的意义。
生2:学习了比例的基本性质
生3:我知道了要判断两个比能否组成比例可以根据意义判断,也可以根据比例的基本性质判断。
师:这节课哪个地方给你留下的印象最深刻?
比和比例教学设计 篇17
教学内容:
比例的意义
教学目标:
使学生理解比例的意义,能应用比例的意判断两个比能否成比例。
教学重点:
比例的意义。
教学难点:
找出相等的比组成比例。
教学过程:
一、旧知铺垫
1、什么是比?
(1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。
300:5=60:1
(2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。
1.2:1.4=12:14=6:7
2.求下面各比的比值。
12:16:4.5:2.710:6
二、探索新知
1.教学例1。
(1)实物投影呈现课文情境图。(不出现国旗长、宽数据)
①说一说各幅图的情景。
②图中有什么相同之处?
(2)你知道这些国旗的长和宽是多少吗?
①出现各图中国旗的长、宽数据。
②测量教室里国旗的长、宽各是多少厘米。
(3)(指教室里的国旗)这面国旗的长和宽的比值是多少?
学生回答教师板书:
60:40=
(3)操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?
①学生回答长、宽比值。
2.4:1.6=
②两面国旗的长和宽的比值相等。
板书:2.4:1.6=60:40
也可以写成=
(5)什么是比例?
在这一基础上,教师可以明确告诉学生比例的意义,并板书:
表示两个比相等的式子叫做比例。
(6)找比例。
师:在这四面国旗的'尺寸中,你还能找出哪些比可以组成比例?
过程要求:
①学生猜想另外两面国旗长、宽的比值。
②求出国旗长、宽的比值,并组成比例。
③汇报。
如:5:=15:10=
5:=15:105:=2.4:1.6
==
2.做一做。
完成课文“做一做”。
第1题。
(1)什么样的比可以组成比例?
(2)把组成的比例写出来。
(3)说一说你是怎么找的。
(4)同学之间互相交流,检验各自所写的比例。
第2题。
(1)学生独立写比例,看谁写得多。
(2)同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。
3.课堂小结。
(1)什么叫做比例?
(2)一个比例式可以改写成几个不同的比例式?
三巩固练习
完成课文练习六第1~3题。
四作业
比和比例教学设计 篇18
教学内容:
比例的基本性质
教学目标:
1.使学生进一步理解比例的意义,懂得比例各部分名称。
2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。
3.能运用比例的基本性质判断两个比能否组成比例。
教学重点:
比例的基本质性。
教学难点:
发现并概括出比例的基本质性。
教学过程:
一、旧知铺垫
1.什么叫做比例?]
2.应用比例的意义,判断下面的比能否组成比例。
0.5:0.25和0.2:0.4:和5:2
:和:0.2:和1:4
3.用下面两个圆的有关数据可以组成多少个比例?
如(1)半径与直径的比:=
(2)半径的比等于直径的`比:=
(3)半径的比等于周长的比:=
(4)周长与直径的比:=
二、探索新知
1.比例各部分名称。
(1)教师说明组成比例的四个数的名称。
板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2.4:1.6=60:40
内项
外项
(2)学生认一认,说一说比例中的外项和内项。
如::=:
外内内外
项项项项
2.比例的基本性质。
你能发现比例的外项和内项有什么关系吗?
(1)学生独立探索其中的规律。
(2)与同学交流你的发现。
(3)汇报你的发现,全班交流。
板书:两个外项的积是2.4×40=96
两个内项的积是1.6×60=96
外项的积等于内项的积。
(4)举例说明,检验发现。
如::0.5=1.2:
两个外项的积是×=0.6
两个内项的积是0.5×1.2=0.6
外项的积等于内项的积。
如果把比例改成分数形式呢?
如:=
2.4×40=1.6×60
等号两边的分子和分母分别交叉相乘,所得的积相等。
(5)归纳。
比和比例教学设计 篇19
教学内容:
义务教育课程标准实验教科书人教版数学六年级下册。
教学目标:
1.理解和掌握比例的意义和基本性质。
2.能用不同的方法判断两个比能否组成比例,并能正确组成比例。
3.通过观察比较、自主探究,提高分析和概括能力,获得积极探索的情感体验。
教学过程:
一、认识比例的意义
1.出示小红、小明在超市购买练习本的一组信息。
(1)根据表中信息,你能选出其中两个量写出有意义的比吗?
(学生思考片刻,说出了1.2∶3、2∶5、1.2∶2、3∶5等多个比,并说出每个比表示的意义。教师适时板书。)
(2)算算这些比的比值,说说你有什么发现。
(学生说出自己的发现,教师用“=”连接比值相等的两个比。)
(3)说说什么叫比例。
(学生各抒己见,师生共同归纳后板书:比例的意义)
评析:比的意义、求比值是这节课所学新知的“生长点”。对此,教师将教材例题后(相当于练习)的一组信息“前置”,这样设计与处理,一是使题材鲜活,导入更为自然;二是把“一组信息”作为学生思考的对象,给学生提供了一定的思维空间,学生学习的热情和积极性明显提高。“激活旧知”后,教师引导学生主动进行比较、发现、归纳,最终实现了对新知的主动建构。
2.即时训练。
A.判断下面每个式子是不是比例,依据是什么?
(1)10∶11(2)15∶3=10∶2
a.学生独立思考,小组讨论交流,说说是怎样判断的,进而说明判断两个比能否组成比例的关键是什么。
b.剩下的(1)(2)(4)三个比中有没有能组成比例的?
c.上面几个比有没有能和5∶4组成比例的,你能不能帮它找一个“朋友”并组成比例?它的朋友有多少个?这些朋友有什么相同点?
评析:认知心理学告诉我们,学生对数学概念、规律的认识和掌握不是一次完成的,对知识的理解总是要经历一个不断深化的过程。因此,上例中教师设计了“即时训练”这一环节。即时训练既有运用新知的直接判断,又有变式和一题多用,较好地体现了层次性、针对性和实效性,它对促进学生牢固掌握新知,灵活运用新知起到了很好的作用。
3.教学比例各部分的名称。
(1)引导学生读教材(相关内容),认识比例各部分名称。
(2)集体交流。(教师板书:内项、外项)
(3)把比例写成分数形式,指出它的内、外项。
(4)任意写一个比例,同桌相互说一说比例各部分的名称。
二、探究比例的基本性质
1.填数。
(1)出示比例8∶( )=( )∶3。想一想,这两个空可能是哪两个数。
〔刚开始时,学生可能从比例的意义的角度去思考,所以填数相对费时,慢慢地,学生似乎发现了“规律”,填数速度加快。教师将学生的发现(如1和24、2和12、0.5和48……)板书在括号下面,与学生一起判断能否组成比例。〕
(2)观察思考:在填这些数的过程中,你有什么发现?
(这一问题满足了学生的心理需求,学生发现每次所填的两个内项之积相等,进而发现“两个内项之积等于两个外项之积”。)
(3)再次设问:在这些比例中,“两个内项之积等于两个外项之积”,这是一种巧合还是在所有的比例中都有这样的规律呢?(学生意见不一,自发产生验证的需求。)
A.先验证黑板上的比例式,再验证自己写的比例式。
B.概括比例的基本性质。同桌相互说一说比例的基本性质。
(4)学了比例的基本性质有什么作用呢?(学生作答。产生用比例的基本性质去验证能否组成比例的需要。)
评析:“每个人的心灵深处都有一种根深蒂固的需要,那就是希望自己是个发现者、研究者、探索者。”这一教学环节正是基于满足学生的“心理需求”而设计的。先由开放性问题引入,给予不同认知基础的学生以各自探究的时间和空间,在自主探索、合作交流中学生的认识经历了由“难”到“易”、由“繁”到“简”的过程。通过“你有什么发现”,“这是一种巧合,还是在所有的比例中都有这样的规律”两个问题指明了学生思考的方向,提升了学生思维的层次,使学生人人体验到“发现者”的快乐。在学生主动获取知识的同时,教师还引领学生经历了科学探究的过程,这些“关于方法的知识”对学生终身学习无疑是有益的'。
2.即时训练。
应用比例的基本性质,判断下面的两个比能否组成比例。
3.6∶1.8和4∶24∶9和5∶10
小结:根据比例的基本性质来判断两个比能否组成比例,其实我们是先假设这两个比能组成比例,如果比例的两个外项的积等于两个内项的积,假设成立,两个比能组成比例;如果不相等,就不能组成比例。
三、巩固新知,解决问题
1.猜数游戏。
在下面每个比例中,有一个或两个数被遮掉了,你能根据所学知识把它猜出来吗?
3∶5=6∶( )( )∶5=6∶( )3∶5=( )∶( )
2.你能用3、5、6、10这四个数组成不同的比例吗?把它们都写出来。(学生探索后交流。)
利用这四个数最多能写出几组比例?怎样写既不重复也不遗漏?(根据时间来安排讨论,也可留作课后进一步探讨。)
评析:练习设计能紧紧围绕教学目标精选练习内容,注意练习的梯度、层次和思维含量。特别是最后的挑战性问题把学生带入了“欲罢不能”的境界,学生思维活跃,讨论热烈。
总评:“比例的意义和基本性质”是一堂“老课”,但执教者却能“老课新教”。新授课的巧妙导入,数学化过程的有效展开,训练的精当、扎实、灵活,以及在突出学生是学习的主人,教师是组织者、引导者的课堂师生关系的定位等方面都颇有新意,因而,这是一堂以新课程理念做指导,又保持着数学课“本色”的朴实无华、扎实高效的数学课。
比和比例教学设计 篇20
教学目标:
培养学生的观察能力、判断能力。
学法引导:
引导学生通过观察、讨论、计算、探究、验证等方法研究比例的意义和比例的基本性质。
教学重点:
比例的意义和基本性质。
教学难点:
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
教学过程:
一、回顾旧知,复习铺垫
同学们,今天数学课上有很多有趣的问题等待你们来探索和发现,希望大家都能有收获。大家有没有信心?
1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把学生举的例子板书出来
2、老师也准备了几个比,想让同学们求出他们的比值,并根据比值分类。
2:3 4.5:2.7 10:6
80:4 4:6 10:1/2
提问:你是怎样分类的?
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:两个比相等4.5:2.7=10:6 12:16=3/5:4/5 80:4 =10:1/2)像这样的式子叫做比例。这就是这节课我们要学习的内容。(板书课题:比例的意义)
二、引导探究,学习新知
1、教学比例的意义。
(1)教学例题。
先出示教材上的四幅图,请同学说说图的内容。找一找四幅图中有什么共同的东西。再出示四面国旗长、宽的尺寸。
师:选择其中两面国旗(例如操场和教室的国旗),请同学们分别写出它们长与宽的比,并求出比值。
提问:根据求出的比值,你发现了什么?(两个比的比值相等)
教师边总结边板书:因为这两个比的比值相等,所以我们也可以写成一个等式
2.4∶1.6 = 60∶40 像这样由两个相等的比组成的式子我们把它叫做比例。
师:在图上这四面国旗的尺寸中,还能找出哪些比来组成比例?
比例也可以写成分数形式:4.5/2.7= 10/6请同学们很快地把黑板上我们写出的比例,改写成分数形式。
(2)引导概括比例的意义。
同学们,老师刚才写出的这些式子叫做比例,那么谁能用一句话把比例的意义总结出来呢?(根据学生的回答板书比例的意义。)
(3)判断。举一个反例:那么2:3和6:4能组成比例吗?为什么?
“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?(看两个比的比值是否相等)如果不能一眼看出两个比是不是相等的,怎么办?”(根据比例的意义去判断)
根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比比值求出来以后再看。
(4)比较“比”和“比例”两个概念。
教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
(5)反馈训练
用手势判断下面卡片上的两个比能不能组成比例。
6:3和12:6 35:7和45:9
20:5和16:8 0.8:0.4和4:2
2、教学比例的基本性质。
(1)自学课本,了解比例各部分的名称,理解各部分的名称与各项在比例中的位置有关。
( 2 )检查自学情况:指名说出黑板上各比例的内外项。
(3)探究比例的基本性质。
师:在比例的内外项之间,存在着一个有趣的特性(比例的基本性质),大家想不想研究?(板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书
两个外项的积是4.5×6=27
两个内项的积是2.7×10=27
“你发现了什么?”(两个外项的.积等于两个内项的积。)板书:4.5×6=2.7×10
(4)计算验证,达成共识。
师:“是不是所有的比例都有这样的性质呢?”让学生分组计算判断前面的比例式,发现所有的比例式都有这个共同的规律。
(5)引导小结比例的基本性质。
师:通过计算,大家,谁能用一句话把这个规律概括出来?
教师归纳并板书:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。
师:“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着4.5/2.7=10/6) “这个比例的外项是哪两个数呢?内项呢?”
学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。
(6)判断。前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。
反馈训练:应用比例的基本性质判断3:4和6:8能不能组成比例。
三、巩固深化,拓展思维。
(一)判断
1.两个比可以组成一个比例。 ( )
2.比和比例都是表示两个数的倍数关系。 ( )
3.8:2 和1:4能组成比例。 ( )
(二)、用你喜欢的方式,判断下面那组中的两个比可以组成比例。把组成的比例写出来。
(1) 6:9和 9:12 (2)14:2 和 7:1
(3) 0.5:0 .2和 5:2 (4)0.8:0.4和0.3:0.6
(三)填空
(1)一个比例的两个外项互为倒数,则两个内项的积是( ),如果其中一个内项是2/3,则另一个内项是(),如果一个比例中,两个外项分别是7和8,那么两个内项的和一定是()。
(2)如果2:3=8:12,那么,()x()=()x()。
(3)写出比值是4的两个比是()、(),组成比例是()。
(4)如果5a=3b,那么,a:b=():( )
(四)下面的四个数可以组成比例吗?如果能,能组成几个?把组成的比例写出来。
2 、3 、4和6
拓展题:猜猜括号里可以填几?
5:2=10:( ) 2:7=( ):0.7 1.2:2.5=( ):25
四、全课小结,提高认识
通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
五、布置作业。
练习六2、3、5
比和比例教学设计 篇21
教学目标:
1、进一步理解比和比例的意义与基本性质,掌握比和分数、除法的关系。能够正确、迅速地求出比值和化简比。
2、应用比的意义求出平面图的比例尺,并根据比例尺求图上距离和实际距离。
3、体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。
教学重点:
掌握比和比例的意义与基本性质。
教学难点:
根据比例尺求图上距离和实际距离。
教具准备:
多媒体课件
教学过程:
一、 导言引入课题
比和比例(一)
二、教学例1
先在下表中写比和比例的一些知识,再举例说明。
比 比例
意义
各部分名称
基本性质
三、教学例2
比和分数、除法有什么联系?先填写下来,说一说它们的区别。
联系 例子
各部分名称
分数 分子 分数线 分母 分数值
除法
比
做一做:5:6=( )( )
四、教学例3
比的基本性质、分数的基本性质、商不变规律之间有什么联系?
1、学生交流
2、化简比。
3、化简比与求比值有什么不同之处?
一般方法 结果
求比值
化简比
五、解比例
X= :2【说一说思路和方法】
六、比例尺
1、什么叫做比例尺?
2、说出下面各比例尺的具体意义。
①比例尺1:3000000表示_____________
②比例尺20:1表示 _____________
3、求比例尺: 一条绿化带长350米,在平面图上用7厘米的线段表示。这幅图的比例尺是多少?
4、求实际距离:在比例尺是 的地图上,量得A到B的距离是5厘米。求AB两地的实际距离?
5、求图上距离:甲乙两地相距200千米,在比例尺是 的地图上,甲乙两地用多少厘米表示?
七、知识应用
练习十七第1、3题。
八、总结梳理
回顾本节课的`学习,说一说你有哪些收获?
板书设计:
比和比例(一)
比和比例的意义与性质。
比和分数、除法的关系。 比和比例(一)
比、比例的基本性质的用途。
比例尺。
比例尺的应用。
教学反思:
在教学中,让学生重温小学阶段比和比例的有关知识并进行系统整理。先让学生回忆,配合相关的练习题,让学生进行训练,加深学生的理解。进一步理解掌握比和分数、除法的关系。能够应用比的意义求出平面图的比例尺,并根据比例尺求图上举例和实际距离培养学生用数学眼光观察生活的习惯。
比和比例教学设计 篇22
教学内容:
教材第111~112页比例的知识和比例尺的计算、“练一练”,练习二十一第9一14题,练习二十一后面的思考题。
教学要求:
1、使学生加深认识比例的意义和基本性质,能判断两个比能不能组成比例,能比较熟练地解比例。
2、使学生掌握比例尺的意义,能正确地进行有关比例尺的计算,培养学生运用知识的能力。
教学过程:
一、揭示课题
在复习了比的知识后,这节课复习比例的知识和比例尺的计算。(板书课题)
二、复习比例知识
1、复习比例的意义。
(1)提问:上面的比能组成哪些比例?为什么?
什么叫做比例?(板书:比例:表示两个比相等的式子。)你能说出比例里各部分的名称吗?(板书各部分名称)
(2)学生练习。
让学生在练习本上任意写一个比和一个比例。指名一人口答所写的比和比例,老师板书。提问:比和比例有什么区别?说明:比和比例的'意义不同,比表示两个数相除的关系、比例表示两个比的相等关系;组成比和比例的项不同,比只有两项,比例有四项。
2、复习比例的基本性质。
(1)提问:比例的基本性质是什么?(板书;比例的基本性质:外项的积等于内项的积。)请同学们按照比例的基本性质,在课本第111页上根据0.4:3=2:15,写出内项积等于外项积的式子。追问:比例的基本性质和比的基本性质有什么不同?
(2)解比例。
学习比的基本性质有什么作用?(板书:解比例)做“练一练”第2题。指名四人板演,其余学生分两组,分别在练习本上做前两题和后两题。集体订正,选择两题让学生说一说第一步的依据。提问:大家总结一下解比例的过程。指出:解比例要先根据比例的基本性质,写成积相等的式子,再求出等式里未知的因数x。
三、复习比例尺计算
1、说明:应用比的知识或者解比例的方法可以计算比例尺的有关问题。(板书:比例尺)
2、复习比例尺的意义、
请同学们自己阅读第112页上关于比例尺的内容,进一步弄清什么是比例尺,比例尺有几种形式。提问:什么是比例尺?(板书:图上距离:实际距离=比例尺)比例尺有哪几种形式?谁来举一个数值比例尺的例子,并且说明它实际表示什么意思?(根据学生举例板书出一个比例尺,让学生说说图上距离是实际距离的几分之一,实际距离是图上距离的多少倍)
3、学生讨论、操作。
如果学校平面图的比例尺是1:1000,它表示什么意思?图上1厘米表示实际距离多少?你能画出线段比例尺来表示它吗?(让学生画在练习本上,然后交换检查)
4、做“练一练”第3题。
请同学们做“练一练”第3题。指名一人板演,其余学生做在练习本上。集体订正,让学生说说是怎样想的。指出:求图上距离或实际距离,可以先设未知数为x,再根据比例尺的意义列出比例,然后解比例求出结果,也可以根据比的前项和后项的倍数关系来求出结果。
四、综合练习
1、归纳复习内容。
让学生说—说本节课复习的具体内容。
2、做练习二十一第9题。
学生先自己思考,然后指名口答。
3、做练习二十一第11题。
让学生写在练习本上。指名口答,老师板书。说说应怎样想。
4、做练习二十一第13题。
(1)做第(1)题。
指名板演,其余学生做在练习本上。集体订正。提问:怎样求一幅图的比例尺?
(2)讨论第(2)、(3)题。
提问:求出这幅图的比例尺后,下面两题可以怎样解答?
5、讨论练习二十一第14题。
让学生读题。这两题有什么相同和不同的地方?想一想,解答这两题应该有什么不同?(强调要注意份数与数量之间的对应关系)
五、讲解思考题
让学生读题。提问:如果照按比例分配问题思考,还需要知道什么条件?现在已知的比的条件怎样?你能应用比的基本性质,把这个比改写成甲数、乙数、丙数三个数的比吗?请大家课后先把这两个条件化成甲、乙、丙三个数的比,再自己试一试,求出三个数各是多少。
六、布置作业
课堂作业;练习二十一第12题(1)、(3)、(5),第13题(2)、(3),第14题。
家庭作业:练习二十一第12题(2)、(4)、(6)。
比和比例教学设计 篇23
【教学内容】
比和比例(1)。
【教学目标】
1.使学生进一步理解比和比例的含义及性质,会化简比和求比值,会解比例。
2.经历比和比例的复习,体验对比、归纳的学习方法,培养学生归纳整理、灵活运用知识的能力。
【重点难点】
理解比和比例、求比值及化简比等知识。
【教学准备】
多媒体课件。
【复习导入】
教师:我们已经学习了比和比例,你知道比和比例的哪些知识?
学生逐一说出一些知识后,教师揭示课题。
【归纳整理】
1.复习比和比例的意义和性质
出示表格,通过提问进行填空。
引导提问:
什么叫做比?举例说明。各部分名称是什么?
什么叫做比的基本性质?举例说明。
什么叫做比例?举例说明。各部分名称是什么?
什么叫做比例的基本性质?举例说明。
(1)组织学生议一议,并相互交流。
(2)指名学生汇报,汇报时注意举例说明,并进行集体评议。
(3)学生汇报后,教师板书表格。
比例的基本性质有什么用处?
指名学生回答。
练习:解比例:
一人板演,其余做在草稿本上。
2.复习比、分数、除法的关系。
提问:比和分数有什么关系?
比和除法有什么关系?
出示表格:
比、分数与除法的关系:
组织学生认真填写表格,并议一议,相互交流。
用投影仪汇报学生的完成情况,并进行集体评议。
教师根据学生的交流板书:
教师举例:5∶6==()÷()
由一名学生板演,其他做在练习本上。
3.复习求比值和化简比。
出示习题:化简下面各比并求比值。
请四名学生板演:其余学生做在练习本上。
做完后集体订正,请同学们说一说求比值与化简比的'方法。
出示表格。
化简比与求比值的不同之处
(1)组织学生独立思考,认真填写表格。
(2)学生互相议一议,互相交流。
(3)指名说一说,并进行集体评议。
教师板书:
4.复习比例尺。
(1)什么叫做比例尺?
指名回答后,教师板书:=比例尺
(2)说出下面各比例尺的具体意义。
①比例尺1:3000000表示
②比例尺20:1表示
③比例尺表示
组织学生先想一想,同桌相互交流。
教师指名说。(多点一些基础较差的人说)
(3)巩固练习。
①求比例尺。
一条绿化带长350m,在平面图上用7cm的线段表示。这幅图纸的比例尺是多少?
②求实际距离。
在比例尺是的地图上,量得A地到B地的距离是5cm。求AB两地的实际距离。
学生独立作业后再集体订正。
答案:①1∶5000②400km。
【课堂作业】
教材85页练习十七第1题。
学生独立作业,然后再集体订正。
【课堂小结】
通过这节课的学习,你对比和比例有了更深刻的认识了吧。你学到了哪些知识,同桌之间相互说一说。
【课后作业】
完成练习册中本课时的练习。
比和比例教学设计 篇24
教学内容
教科书第27页第1~3题,练习六第1~3题.
教学目的
1.回顾本单元的知识,进一步理解比和比例的意义及它们之间的区别,能较熟练地解比例.
2.进一步理解成正、反比例的量的意义及它们之间的相同点及不同点,能正确判断两种相关联的量成什么比例.
3.使学生再一次经历将一些实际问题抽象成代数问题的过程,体会事物之间的联系和区别;根据知识间的`联系,渗透整理复习的方法.
教具、学具准备
自制多媒体课件
教学过程
一、整理
1.说一说你在本单元都学了哪些知识?
让学生在小组内你一言我一语地说,对本单元的知识作一回顾,教师给足学生说的时间,再让每个小组派代表全班交流,教师随机把学生的发言(即各知识点)板书在黑板上.
2.完成知识结构图.
这些知识在我们的脑中比较零散,不便于记忆和运用,请大家用你认为好的方式对这些知识加以整理.分小组讨论整理.
3.用实物展示屏进行展示交流.
4.揭示课题:这节课复习前两部分的知识.
二、复习
1.下面式子中,哪个是比?哪个是比例?比和比例有什么区别?
3∶8 4∶9=12∶27 7∶32=35∶10 0.25∶0.8
2.比例的基本性质是什么?什么叫解比例?解下面的比例.
∶=x∶20 =
= 3.9∶4=2.6∶x
学生在练习本上练习,指名板演.学生练习后讲评.
3.什么叫比例尺?怎么求图上距离?怎么求实际距离?
课件出示:在一幅比例尺是1∶12000000的地图上,量得南昌与北京的距离是20.5厘米,北京与南昌的实际距离是多少千米?
4.小山看一本《十万个为什么》.下表是每天看的页数与所需天数两种量相对应的数.
每天看的页数 3 5 8 10
所用的天数 40 24 15 12
表中两种量中相对应的数有什么规律?这两种量叫什么量?它们之间是什么关系?
5.课件出示:4个同学去买圆珠笔.下表是他们购买圆珠笔的枝数与总价两种量相对应的数.
购买圆珠笔的枝数 2 3 5 8
总价 0.50 0.75 1.25 2.00
表中两种量中相对应的数有什么规律?这两种量叫什么量?它们之间是什么关系?
6.说一说什么叫正比例关系?什么叫反比例关系?它们之间有什么联系和区别?
梳理判断两种量是否成正(反)比例的思考步骤:
(1)先找出三种量,其中两种相关联的量和一个定量;
(2)根据两种相关联的量之间的数量关系,列出关系;
(3)根据正(反)比例的意义,作出结论.
三、分层练习,巩固提高
1.填空.
(1)妈妈用10元钱可以买3千克鸡蛋,总价与数量的比是( ),比值是( ).
(2)汽车3小时行180千米,路程与时间的比是( ),比值是( ).
(3)因为14∶21与0.8∶1.2的比值都等于( ),所以可以组成比例,( )∶( )=( )∶( ).
(4)根据比例的基本性质,把6∶2=0.9∶0.3写成乘法形式是( )×( )=( )×( )
(5)一幅设计图上注明的比例尺是:
在这幅图上量得长8厘米的线表示实际( )米;图上表示实际距离400米的线段长( )厘米.
(6)观察表中总价与本数的关系,并填空.
数量(本) 2 3 5 6 8 9 10
总价(元) 0.9 1.35 2.35
2.选择正确答案的字母填入括号里.
(1)时间一定,所行路程与速度( ).
(2)正方体的体积和棱长( ).
(3)全班人数一定,出勤率和出勤人数( ).
(4)单价一定,总价与数量( ).
(5)一篇文章的总字数一定,每行的字数与行数( ).
A.成正比例关系 B.成反比例关系 C.不成比例
3.判断下面各题中两个变量是否成比例,成什么比例.
(1)xy=,x与y( )比例;x=,x与y( )比例.
(2)3a=b,a与b( )比例;=,b与a( )比例.
(3)x-y=18,x与y( )比例.
4.独立练习.
完成练习六第1~3题.
比和比例教学设计 篇25
教学内容:
教材第84页例4,练习十七第2、4----7题。
教学目标 :
1、理解正、反比例的意义。能正确判断两种量是否成正比例或反比例。能熟练地运用比例来解决有关问题。
2、经历交流、讨论、练习等学习过程,使学生进一步认识事物之间的联系和发展变化的规律,提高学生运用比例来解决有关问题的能力
3、培养学生用发展变化的观点来分析问题的能力,渗透函数思想。
教学重点:
掌握正、反比例的意义。
教学难点:
正确判断两种量成什么比例。
教具准备:
多媒体课件。
教学过程:
一、明确学习任务
出示课题
二、正、反比例的意义
1、例4:你是怎样判断两种量成正比例还是成反比例的?
正比例
①两种相关联的量;
②其中一种量增加,另一种量也随着增加,一种量减少,另一种量也减少;
③两种量的比值一定。
反比例
①两种相关联的量;
②其中一种量增加,另一种量反而减少,一种量减少,另一种量反而增加;
③两种量的积一定。
2、你能用字母表示正、反比例的关系吗? =k(一定) 成正比例
y =k(一定) 成反比例
三、判断两种量是否成正比例或反比例。成什么比例?
①速度一定,路程和时间。
②正方形的边长和它的面积。
③订《少年报》数量和所需钱数。
④小明从家到学校,行走的速度和时间。
⑤圆的`周长和半径。
⑥圆的面积和半径。
四、用比例解决问题。
1、说一说用比例解决问题的步骤。
2、举例:修一条公路,全长12km,开工3天修了1.5km。照这样计算,修 完这条公路一共需要多少天?
A.两种相关联的量是什么?
B.两种量成什么比例?说明理由,写出等量关系式
C.设未知数X,列出比例式
D.解比例并检验
五、知识应用
独立完成练习十七第2、4----7题。
六、课堂总结
回顾本节课的学习,说一说你有哪些收获?
板书设计:
比和比例(二)
A.认真审题,找出两种相关联的量;
B.判断两种量成时难免比例;用比例解决问题的过程、步骤
C.设未知数X;
D.列出比例式(含有未知数);
E.解比例、检验。
教学反思:
在教学中,以学生为主体,教师为主导,训练为主线。先让学生回忆,重温小学阶段正、反比例的意义及用比例知识解决问题的有关知识并进行系统整理,配合相关的练习题,让学生进行训练,加深学生的理解提高学生运用比例来解决有关问题的能力。
比和比例教学设计 篇26
教学目标
1.理解比和比例的意义及性质.
2.理解比例尺的含义.
教学重点
整理比和比例、求比值及比例尺.
教学难点
正、反比例概念和判断及应用.
教学步骤
一、基本训练.
43-27
5.65+0.5 4.8÷0.4 1.25÷ 100×1%
0.25×40 2-
二、归纳整理.
(一)比和比例的意义及性质.
1.回忆所学知识,填写表格【演示课件“比和比例”】
2.分组讨论:
比和分数、除法有什么联系?
比的基本性质有什么作用?比例的基本性质呢?
3.总结几种比的化简方法.【继续演示课件“比和比例”】
比
前项
∶(比号)
后项
比值
除法
分数
(1)整数比化简,比的前项和后项同时除以它们的最大公约数.
(2)小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简.
(3)分数比化简,一般先把比的前项、后项同时乘上分母的最小公倍数,使它成为整数比,再用第一种方法化简.
(4)用求比值的方法化简,求出比值后再写成比的形式.
解比例:12 :x=8 :2
4.巩固练习.
(1)李师傅昨天6小时做了72个零件,今天8小时做了96个零件.写出李师傅昨天和今天所做零件个数的比和所用时间的比.这两个比能组成比例吗?为什么?
(2)甲数除以乙数的商是1.4,甲数和乙数的比是多少?
(3)解比例: ∶ =8∶2
(二)求比值和化简比.【继续演示课件“比和比例”】
1.求比值:4∶
化简比:4∶
2.比较求比值和化简比的区别.
一般方法
结果
求比值
根据比值的意义,用前项除以后项
是一个商,可以是整数、小数或分数
化简比
根据比的基本性质,把比的`前项和后项都乘以或者除以相同的数(零除外)
是一个比,它的前项和后项都是整数
3.巩固练习.
(1)求比值.
45∶72 ∶3
(2)化简比.
∶ 0.7∶0.25
(三)比例尺.【继续演示课件“比和比例”】
1.出示中国地图.
教师提问:
(1)这幅地图的比例尺是多少?(比例尺是 )
(2)什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)
(3)比例尺除了写成 ,以外,还可以怎样表示?
2.巩固练习.
在一幅地图上,用3厘米长的线段表示实际距离900千米.这幅地图的比例尺是多少?
在这幅图上量得A、B两地的距离是2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?
(四)正比例和反比例.【继续演示课件“比和比例”】
1.回忆正、反比例意义.
2.巩固练习.
(1)判断下面各题中的两种量是不是成比例.如果成比例,成什么比例.
①收入一定,支出和结余
②出米率一定,稻谷的重量和大米的重量.
③圆柱的侧面积一定,它的底面周长和高.
(2)木料总量、每件家具的用料和制成家具的件数这三种量
当( )一定时,( )和( )成正比例;
当( )一定时,( )和( )成正比例;
当( )一定时,( )和( )成反比例.
(3)如果 =8 , 和 成( )比例.
如果 = , 和 成( )比例.
(4)在一幅地图上,比例尺一定,图上距离和实际距离是不是成比例?成什么比例?
三、全课小结.
这节课我们复习了什么?通过这节课的复习你有什么收获?还有哪些不清楚的
问题?
四、课堂练习.
1.填空.
(l)根据右面的线段图,写出下面的比.
①甲数与乙数的比是( ). 甲数:
②乙数与甲数的比是( ). 乙数:
③甲数与甲乙两数和的比是( ).
④乙数与甲乙两数和的比是( ).
(2)( )24= =24 ∶( )=( )%.
(3) ∶6的比值是( ).如果前项乘上3,要使比值不变,后项应该( ).如果前项和后项都除以2,比值是( ).
(4)把(1吨):(250千克)化成最简整数比是( ),它的比值是( ).
(5) 与3.6的最简整数比是( ),比值是( ).
(6)如果a×3=b×5,那么a∶b=( )∶( ).
(7)如果a∶4=0.2∶7,那么a=( ).
(8)把线段比例尺 改写成数值比例尺是( ).
(9)甲数乙数的比是4∶5,甲数就是乙数的( ).
(10)甲数的 等于乙数的 ,甲乙两数的比是( ).
2.选择正确答案的序号填在( )里.
(1)1克药放入100克水中,药与药水的比是( ).
①1∶99 ②1∶100 ③1∶101 ④100∶101
(2)一项工程,甲队单独做要10天,乙队单独做要8天.甲队和乙队工作效率的最简整数比是( ).
①10∶8 ② 5∶4 ③4、∶5 ④ ∶
(3)在下面各比中,与 ∶ 能组成比例的是( ).
①4∶3 ②3∶4 ③ ∶3 ④ ∶
(4)有一无,某班的出勤率是90%,出勤人数和缺勤人数的比是( ).
①9∶10 ②10∶9 ③1∶9 ④9∶1
(5)在一幅地图上用1厘米的线段表示5千米的实际距离,这幅地图的比例尺是( ).
①1∶5 ②1∶5000 ③1∶500000
(6)用3、5、9、15这四个数组成的比例式是( ).
①15∶3=5∶9 ②3∶15 ③15∶9=5∶3 ④9∶3=5∶15
(7)在比例尺 的地图上,2厘米表示( ).
①0.4千米 ②4千米 ③40千米
(8)大小两圆半径的比是3∶2,它们的面积的比是( ).
①3∶2 ②6∶4 ③9∶4
五、布置作业.
1.化简下面各比.
0.12∶56 ∶
2.写出两个比值都是3的比,并组成比例
3.写出一个比例,使它两个内项的积是12.
4.如图是用1∶20的比例尺画的一个机器零件的截面图,量出图中两个圆的半径,并计算这个零件截面的实际面积.
【比和比例教学设计】相关文章:
比与比例教学设计08-02
比例的意义和基本性质的教学设计07-18
《比例的意义和基本性质》教学设计10-17
教案《比例的意义和基本性质》教学设计06-06
《比例尺》教学设计06-26
《正比例》教学设计05-25
关于反比例函数的图象和性质教学设计10-21
《比例的应用》教学设计(精选12篇)03-14
比例的基本性质教学设计06-04
《比例的基本性质》教学设计09-27