教学设计

四年级《乘法运算定律》教学设计

时间:2024-08-28 16:44:56 海洁 教学设计 我要投稿
  • 相关推荐

四年级《乘法运算定律》教学设计(精选12篇)

  作为一名辛苦耕耘的教育工作者,时常需要编写教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。优秀的教学设计都具备一些什么特点呢?以下是小编为大家收集的四年级《乘法运算定律》教学设计,仅供参考,欢迎大家阅读。

四年级《乘法运算定律》教学设计(精选12篇)

  四年级《乘法运算定律》教学设计 1

  教学目的:

  1、使学生经历探索乘法交换律和乘法结合律的过程,理解并掌握规律,能用字母表示规律。

  2、理解乘法分配律,掌握乘法分配律的成立条件,能初步应用乘法分配律解决简单的实际问题。

  3、使学生学会运用乘法运算定律进行简便计算,体验运算律的应用价值,培养学生灵活选用计算方法的意识和能力。

  4、培养学生观察、比较、分析、综合和归纳、概括等思维能力。

  教学重点:

  理解并掌握乘法运算定律,并会运用运算律进行简便计算。

  教学难点:

  理解并掌握乘法分配律的含义。

  教法与学法:

  本课主要采用情境创设法和启发式谈话法,并辅以练习法等,以激发学生的主观能动性,让学生在自主探索和合作交流的过程中学习新知,真正体现学生的主体地位。

  教学过程:

  一、复习引入

  1、同学们,我们学习了加法的哪些运算定律?下列等式应用了什么定律?

  80+A=A+80

  (48+36)+52=(48+52)+36

  321+28+79+172=(321+79)+(28+172)

  2、口算抢答比赛

  12×525×435×2125×845×425×8

  师:同学们看一看这些积有什么特点?(引导发现:当两个数相乘等于整十、整百、整千的数时会使计算更加简便。)

  师:再看这道题。57×12+43×12

  你还能快速算出结果吗?要想快速算出结果需要用一样数学法宝,那就是“乘法运算定律”。板书课题:乘法运算定律

  今天我们就借助于植树活动探究乘法运算定律。

  【分析:一组口算看似简单,其用意则不凡。前几题学生能很快说出得数,正在学生兴奋之时,出示57×12+43×12,学生都迟迟说不出或说不准,这样由“很快”突然到“很慢”,使学生产生了急于想知道得数的心理需要,就在这时,教师又故作玄虚地说:“需要用一样数学法宝……”短短几句,又一次把学生的求知欲望激发起来。】

  二、探索新知

  师:观察植树活动的主题图,说说你从图中都了解到了哪些信息?(学生可以复述图中的两段说明文字,也可用自己的话进行叙述。)

  师:根据图中带给我们的信息,可以提出哪些数学问题?(根据学生的回答,课件出示例1、例2、例3。)

  1、学习例1。

  1)思考:要解答负责挖坑、种树的一共有多少人?这个问题,需要知道哪些相关的'信息?

  预设:一共有25个小组,每组里4人负责挖坑、种树。

  2)可以怎样列式?根据学生回答,板书4×2525×4

  3)引导学生进行观察、比较。

  两个算式结果是多少?(100人)那可以用什么符号来表示它们之间的关系?(等号)板书:4×25=25×4

  4)你能再举出几个像这样的例子吗?根据学生的举例板书。

  5)归纳总结。

  同学们观察一下每组等号左右两边的算式,你发现了什么?

  预设1:左边和右边的算式都是两个相同的数相乘,乘的结果都相等。

  预设2:左边算式和右边算式的两个因数位置不一样,都交换了。

  师:这就是乘法交换律。(课件出示:两个数相乘,交换两个因数的位置,积不变,这叫做乘法交换律。)

  6)你能用字母表示乘法交换律吗?板书:a×b=b×a

  请同学说说这里的a、b可以是哪些数?

  7)其实,乘法交换律早就是我们的朋友了,还记得乘法口诀吗?生说一句乘法口诀,并根据这句口诀写出两道乘法算式。这里应用了什么?

  2、学习例2

  接下来我们解决第二个问题:一共有25组,每组要植树5棵,每棵树要浇水2桶。一共要浇多少桶水?

  1)师:请同学们认真读题,说说你的想法,你会先求什么,再求什么?

  预设1:我先求一共种了多少棵树,再求一共要浇多少桶水。

  预设2:我先求每组浇多少桶水,再求一共要浇多少桶水。

  师:同学们想好以后就可以根据自己的想法列出综合算式并计算。

  (教师巡视,请两种不同算法的同学板演)

  2)师:你们计算的结果是多少?(250桶。)

  师:这两种列式的结果一样,所以我们可以写作:

  (25×5)×2=25×(5×2)

  你还能写出类似的算式吗?(学生举例)

  3)师:从上面这些式子,你发现了什么?能试着用自己的话说一说吗?

  预设:先乘前两个数,或者先乘后两个数,积不变。

  师:是的,这就是乘法结合律。(板书,课件出示内容)

  师:你能用字母表示出来吗?

  预设:(a×b)×c=a×(b×c)

  4)思考:比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?

  预设:交换律是两数相加、相乘的规律;结合律是三数相加、相乘的规律,既可以从左往右一次计算,也可以先把后两个数相加(乘),和(积)不变。

  3、学习例3

  现在我们解决第三个问题:(课件出示)

  一共有25组,每组里4个人挖坑种树,2个人抬水浇树。一共有多少

  名同学参加了这次植树活动?

  1)师:请同学们认真读题,说说你的想法,你会先求什么,再求什么?

  预设1:我先求每组的人数,再求总人数。

  预设2:我先求挖坑种树的人数,再求抬水浇树的人数,最后加起来。

  师:好,下面请同学们根据自己的想法列出综合算式并计算。

  (教师巡视,请两种不同算法的同学板演)

  师:同学们,你们的结果是多少?(150人。)

  师:这两种列式的结果一样,所以我们可以写作:

  (4+2)×25=4×25+2×25

  师:等号两边的算式有什么相同和不同?

  2)探究、验证。

  出示:((出示一组算式)猜一猜:它们的结果会怎样?

  (3+2)×4○3×4+2×4

  (5+10)×2○5×2+10×2

  师:中间可以用“=”来连接吗?(通过计算验证)

  师:这两道算式相等是一种巧合还是有规律呢?请同学们从左到右观察,你能发现什么规律吗?

  3)小组讨论,全班总结。

  预设:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再

  把两个积相加,结果不变。

  师:是的,这就是乘法分配律。(板书,课件出示内容)

  师:你能用字母表示出来吗?

  预设:(a+b)×c=a×c+b×c或a×(b+c)=a×b+a×c

  三、巩固联系,提升认识。

  同学们,乘法的三个定律你觉得学得怎样?老师这儿有些练习题,你敢接受挑战吗?

  1.根据乘法运算定律,在里填上适当的数。

  15×16=16×

  (25×7)×4=(×)×7

  3×4×8×5=(3×4)×(×)

  117×13+117×7=117×(+)

  167×2+167×3+167×5=167×(+)

  2、下面哪些算式是正确的?正确的画“√”,错误的画“×”。说一说你的判断理由。

  56×(19+28)=56×19+28()

  32×(8×2)=32×8+32×2()

  87×87+13×87=(87+13)×87()

  1+2×3=1+3×2()

  3、李阿姨购进了60套这种运动服,花了多少钱?

  四、总结延伸。

  同学们,你有什么收获对自己说?对同学有什么温馨提示?还有什么困惑?

  四年级《乘法运算定律》教学设计 2

  一、教学内容

  人教版新课标教材小学数学四年级下册33页-35页内容,《乘法运算定律》第一课时。

  二、教学目标

  ⑴学生经历乘法交换律和结合律的总结过程,感知“猜想----验证”这一总结规律的方法。

  ⑵学生理解掌握乘法交换律和结合律,会用不同方式表示运算定律,以及利用运算定律解决简单的问题。

  ⑶学生感受解决问题的过程和策略,提高解决问题能力。对数学有新的理解和认识。

  三、教学重点

  学生理解掌握乘法交换律和结合律,会用不同方式表示运算定律,以及利用运算定律解决简单的问题。

  四、教学难点

  学生经历乘法交换律和结合律的总结过程,感知“猜想----验证”这一总结规律的方法。

  五、教法和学法

  由于本节课教学内容具有较强的问题性和可探究性,所以,我采用了以组织探究学习活动为主的教学策略。力求在通过“猜想----验证”的方式总结运算定律的同时,培养学生解决问题的意识和能力。

  六、教学过程

  (一)创设情境,呈现问题;

  “同学们,你们知道3月12日是什么日子吗?”

  说一说植树有什么好处吗?

  今天这节课,我们就通过解决与植树有关的问题去发现、总结乘法中的运算定律。

  (二)猜想验证,总结规律;

  1、引导为主探索乘法交换律

  ⑴提出猜想

  (出示主题图)“请同学们仔细观察图上的数学信息,你能提出一个用一步乘法解决的数学问题吗? ”(学生提,师板书)

  “你们还有不一样的算式吗?”(板书两个算式。)

  “同样的.问题我们列出了两个不同的算式,但结果是一样的。那我们可以说25×4=4×25。”(板书算式)

  观察这个算式,用自己的话说一说你发现了什么?

  “通过这样一个式子,我们发现两个因数交换位置,积不变。那么,我们只是提出了一个猜想,这个规律能否试用于所有的乘法呢?我们还需要进一步的验证。

  ⑵验证猜想

  说一说,你们打算怎样验证这个规律呢?

  ⑶得出结论

  汇报。

  小结:通过刚才的猜想、验证,可以证实我们发现的规律不是偶然的,它可以应用于所有的乘法。

  (板书:乘法交换律)

  “你们能用字母来表示乘法交换律吗?”

  ⑷小结:我们已经探索出了乘法交换律。请同学们回忆一下,刚才我们是按怎样的过程总结出乘法交换律的呢?

  引导学生回答:先解决实际问题——发现规律——猜想——举例验证——得出结论

  2、自主探索乘法结合律

  按《友情提示单》自主探究学习。

  (1) 提出活动要求。

  (2) 学生活动。

  (3) 汇报总结并板书。

  (4) 用字母表示乘法结合律并板书。

  三、巩固应用,拓展总结

  (一)基本练习

  1、书后做一做第1题

  2、你根据乘法运算定律,猜一猜小猫背后的数。37页2题(猜数、说说用了哪条运算定律。)

  (二) 综合练习

  课件出示小精灵的问题,说说你们的发现。(交流、汇报)

  小结:交换律是两个数相加交换位置、两个数相乘交换位置的规律。结合律是三个数相加、或三个数相乘,改变运算顺序的规律。

  (三)拓展练习

  完成做一做第2题。

  1.提出一个用两步乘法计算的数学问题并独立解决?

  2.汇报

  小结:计算三个数相乘时,乘积是整十、整百、整千的数先相乘,这样计算简便。

  四、课堂小结

  回忆一下这节课内容,说说你有什么收获?(重点说你学会了什么?怎么得到的和怎么发现的。)

  四年级《乘法运算定律》教学设计 3

  教学目标:

  1、通过探索乘法分配律中的活动,学生进一步体验探索规律的过程,初步学习体会提出猜想的方法及类比,说理,举例论证的方式,发展学生的思维力,创造力。

  2、引导学生在探索的过程中,自主发现乘法分配律,并能用字母表示。

  3、能够运用乘法的分配律进行简便计算。

  重点、难点:

  重点:学生参与推导乘法分配律的过程。

  难点:乘法分配律的推理及运用。

  教学过程:

  一、回顾激趣,提出猜想

  (1)同学们,学习新课前,我们先来回顾学过的运算定律。找出共同点?和或积同。

  乘法交换律的字母公式( )。 乘法结合律的字母公式( )…….

  (设计意图:四个公式板书在黑板,以便与乘法分配律对比)

  (2)利用学过的长方形周长内容得出两种不同解题方法。刚才的计算中你发现这两道题有什么关系吗?2×( 37+63) 2×37 + 2×63

  教师让学生比较两个算式的异同点,并指名说一说自己找出的规律。

  引导学生发现:这两个算式的运算顺序不同,但结果相同,两道题其实可以互相转化,可以用一个等式表示:2×( 37+63) =2×37 + 2×63

  (3)将学生的知识迁移到本节课新授内容,在课的开始,积极调动学生学习积极性。

  二、引导探究,发现规律。

  1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)

  我班同学男生27人,女生25人,每人植树3棵,共植树?棵(植树节3.12)

  (1)全班同学独立完成。

  (2)谁愿意把自己的方法说给大家听听。(生回答,师板书)

  还有不一样的方法吗?谁来说说看?(生回答,师板书)

  板书:(27+25)×3 27×3+25×3

  评讲:算式(27+25)×3 和27×3+25×3的每一步各表示什么?谁能说给大家听听?

  (3)观察这两个算式,你有什么发现?

  引导学生比较两个算式异同点,并指名学生说一说自己想法,思路。

  生:这两个算式的得数是一样的。

  师:是的,虽然他们的格式不同,但他们的得数相同,所以我们可以用一个符号把这两个算式联系起来。

  生:等于号

  师:对,用等于号相连,表示这两个式子是相等的,一起读一读,认识这两种方法的结果是一样的`,师:再和前面的一组式子一起观察,

  (让学生通过读,感悟到左边是两个数的和乘一个数,右边的两个数的积加上两个数的积)

  2、举例验证,进一步感受

  认真观察屏幕上的这个等式,你还能举出几个类似的例子来验证吗?(板书:举例)

  (1)验证方法:要求每人出两组算式,数字随意举例,进行计算,验证你举的例子是否相等。然后拿到小组内交流(学生小组合作交流,教师巡视指导。)

  (2)学生回报:谁来说一说自己举的例子。

  (3)同学们,请看一看这三个同学举的例子,每组的结果都是相同的,我们就可以用等号把它们连接起来。(板书)

  (4)轻声读这些等式,你发现了什么?

  (设计意图:通过多个例子,揭示乘法分配律的普遍规律)

  3、归纳总结,概括规律。

  (1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)

  (2)从刚才的举例过程中,你能发现乘法运算中的规律吗?

  学生回报。

  (出示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。这叫做乘法的分配律。)

  同学们发现的这个知识规律,叫做乘法分配律。 (板书:乘法分配律)

  (3)如果用a、b、c分别表示三个数,你会用字母表示乘法分配律吗?

  结合学生回答,教师板书:(a+b)×c=a×c+b×c 齐声读两遍。

  (4)对于乘法分配律,用字母来表示,感觉怎样。

  与乘法交换律、结合律想对照:a×b=b×a (a×b)×c=a×(b×c)

  (a+b)×c=a×c+b×c 比较有什么不同?

  (设计意图:增强学生对乘法分配律涉及到加法的运算难点的理解)

  三、加强应用、深化理解

  1、根据运算定律,在( )填上适当的数。

  (10+7) ×6=( )×6+7×( )8×(125+9)=( )×125+( )×9

  7×48+7×52=( )×(48+52) (7×48+7×52中有相同因数吗?)

  (设计意图:通过具体的练习理解乘法分配律)

  2、火眼金睛看一看:判断下面算式是否正确?并说明理由?

  56×(19+28)= 56×19+28 ( )

  32×(7×3)= 32×7+32×3 ( )

  25×12+12×75 = 12×(25+75) ( )

  25×99+25 =(99+1)×25 ( )

  3、利用乘法分配律,计算下列各题。

  ( 80 + 4 ) ×25 34 ×72 + 34 ×28 88×125试做

  师小结:通过前两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

  4、34×10+27×10+39×10可不可以用乘法分配律

  师:说明乘法分配律,不仅仅只适用于两个数的和,也可以三个数的和,四个数的和可以吗?说明也可以是:几个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加。(修改乘法分配律的板书)

  5、找朋友

  师:如果一个同学说出乘法分配律的左边部分,那你就说出它的右边部分,如果他说出的是右边部分,你就对出左边部分。看谁反应快。

  6、24×8—4×8=(24—4)×8吗?

  师:说明乘法分配律,不仅仅只适用于两个数的和,也可以是两个数的差,三个数的差可以吗?说明也可以是:几个数的和(或差)与一个数相乘,可以先把它们分别与这个数相乘,再相加(或相减)。(设计意图:拓展书本上乘法分配律的概念)

  7、用简便方法计算下列各题。(8+4)×25 34×72+34×28

  (设计意图:概念只有在具体的练习中才能逐步理解,概念教学必须当堂采用讲练相结合的方法,学生才能消化抽象的概念)

  四、总结:

  1、这节课你的收获是什么?什么叫做乘法分配律?(设计意图:不能让总结性提问只是走了过场,通过这个环节切实起到梳理知识,提高学生总结能力)

  2、如果把乘法分配律中的加法改成减号,等式是否依然成立?根据乘法分配律,你能把下列等式填写完整吗?同学们课后交流一下,下节数学课我们再继续研究。

  教师激发学生好胜心:在乘法分配律中有许多变化,题里辨别出用乘法分配律简算的题呢?36×99+36 73×31+28×31—31

  3、思考:填写完整:

  a×(m-n)= a×125+b×125-c×125

  四年级《乘法运算定律》教学设计 4

  教学目标

  1、知识与技能:引导学生探究和理解乘法交换律、结合律,能运用运算定律进行一些简便运算。

  2、过程与方法:通过学生猜想, 观察、比较、概括、联想等方法,使学生理解并掌握乘法的交换律和结合律,培养学生的分析推理能力,发展思维的灵活性。

  3、情感态度与价值观:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学重点:

  学生发现乘法交换律和结合律的过程

  教学难点:

  验证乘法交换律和结合律的过程,能用自己的语言描述乘法交换律和乘法结合律,并会用字母表示。

  教学过程:

  一、创设情境,生成问题

  1、我们学习了哪些运算定律?谁能说一说?什么是加法交换律,用字母应该怎样表示?加法结合律呢?

  a+b=b+a (a+b)+c=a+(b+c)

  2、引入新课:同学们猜一猜:这是我们学习的加法交换律和加法结合律,那么乘法可能有哪些运算定律呢?

  二、自主探究、验证猜想

  1、验证乘法的交换律

  同学们到底猜得对不对呢,这就需要我们来验证

  保护环境对人类非常重要,植树是一件非常有意义的事,瞧,小明和他的小伙伴们正在植树呢(出示例5主题图)。

  (1)、请同学们仔细观察主题图。从图上你发现了哪些数学信息?

  (2)、根据这些数学信息你能提出哪些数学问题?

  (3)、小组讨论,指名汇报并解答

  a 、负责挖坑、种树的共有多少人?

  25×4=100(人)4×25=100(人)

  探究、发现问题:

  教师提问:4×25和25×4得数是否相等?都表示什么?两个算式之间可以用什么符号连接?(引导学生回答,明确:4×25=25×4) b 、负责抬水、浇树的共有多少人?

  25×2=50(人)2×25=50(人)

  仔细观察这两人个算式,你发现了什么?

  C 、每组要浇多少桶水?

  5×2=10(桶)2×5=10(桶)

  仔细观察这两人个算式,你发现了什么?

  (4)、仔细观察这几组算式,你有什么发现?学生谈发现.

  25×4=4×25

  25×2=2×25

  5×2=2×5

  (5) 、请学生用自己的'话来叙述发现的规律?(师根据学生的回答进行汇总)

  两个数相乘,交换两个因数的位置,积不变,这叫做乘法交换律。这就验证了同学们的猜想,乘法确实有交换律。

  (6)、你能用自己喜欢的方式表示出乘法的交换律吗?(学生独立完成,指名汇报)

  甲数×乙数=乙数×甲数

  × = ×

  a × b = b × a

  (7)、你最喜欢哪一种?

  (8)、其实乘法交换律在我们以前就用到过,同学们回忆一下在哪些地方用过(学生思考后回答),再次证明交换两人个因数的位置积不变。

  2、验证乘法结合律

  刚才我们通过自己提出问题,解决问题,发现了乘法交换律确实存在,那乘法结合律是不是也真的存在呢,接下来我们自己举例验证

  (1)、学生自己举例,小组交流,初步验证乘法结合律

  (2)、指名汇报.

  (8×4) ×5= 8×(4×5)

  (5×2) ×3= 5×(2×3)

  (25×4) ×1= 25×(4×1)

  (3)、仔细观察这几组算式,你有什么发现?学生谈发现

  (4)、刚才同学们通过举例来初步验证了乘法结合律的存在,老师也用了一道应用题来进行验证,再次验证乘法的结合律。

  a 、出示例6

  b 、学生理解题意,找出已知条件和所求问题。

  c 、你能用不同的方法解答吗?学生独立列式

  (25×5)×2 25×(5×2)

  =25×10 =125×2

  =250(桶) =250(桶)

  d 、仔细观察这组算式,你有什么发现?学生谈发现

  (25×5)×2 = 25×(5×2)

  (5)、通过刚才解决这道题,我们再一次验证了乘法结合律的存在,什么叫做乘法的结合律呢?

  三个数相乘,先乘前两个数,或者先乘后两个数,它们的积不变,这叫做乘法结合律。

  (6)、你能用字母表示出乘法结合律吗?

  3、比较加法交换律和乘法交换律,加法结合律和乘法结合律,你有什么发现(学生仔细观察,谈发现)

  三、巩固与练习。

  1、填空。

  12×32=32×( )

  108×75=( )×( )

  60×( )=8×( )

  25×( )=( )×25

  30×6×7=30×(6× )

  125×(8×40)=( × ) ×( )

  2、你能很快算出每组气球上三个数的积吗?

  3、你能用简便方法计算吗?

  23×15×2 5 ×37×2

  492×5×2 25×166×4

  8×5×125×40

  五、小结。

  这节课学习了什么内容,你有哪些收获?

  六、作业布置。教材27页的第2、3题。

  四年级《乘法运算定律》教学设计 5

  教学目标

  会用简便的方法计算小数乘法;初步培养学生的.合作意识和能力。

  教学重点

  会用简便的方法计算小数乘法。

  教学过程

  一、复习

  出示有关整数简便计算的练习题。

  小结,学过了哪些运算定律。(板书运算定律)

  二、新授

  1、教学例4

  算一算,下面的○里能填上等号吗?

  0.81.3○1.30.8

  (0.90.4)0.5○0.9(0.40.5)

  (3.2+2.8)0.6○3.20.6+2.80.6

  提问:每组的两个算式有什么关系?你能发现什么规律?

  学生交流。发现:用了乘法运算律。

  ab=ba

  (ab)c=a(bc)

  (a+b)c=ac+bc

  说明:整数乘法的运算律,对小数乘法也同样适用。

  2、试一试

  下面各题怎样计算比较简便?

  0.250.7340.32403

  完成后,学生交流。指一人板书。

  3、练一练

  用简便方法怎样计算比较简便?

  0.250.7340.32403

  计算下面各题,并应用乘法交换律验算。

  3.54.80.370.251.90.18

  三、综合练习。

  1、练习十六,第7题。

  2、一块平行四边形的塑料板,底边长3.2分米,高1.84分米。它的面积是多少平方分米?(先估算,在计算,得数保留整数。)

  四、作业

  1、练习十六8、9题。

  2、简便计算补充练习

  先说说方法,运用哪些运算定律

  四年级《乘法运算定律》教学设计 6

  学习目标

  1、知道乘法结合律,能运用运算定律进行一些简便运算。

  2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性

  3、能用所学知识解决简单的实际问题。

  学习难点:

  探究和理解结合律,能运用运算定律进行一些简便运算。

  学习重点:

  探究和理解结合律,能运用运算定律进行一些简便运算。

  教学流程:

  一、 出示课题

  板书:探究和理解结合律,能运用运算定律进行一些简便运算。

  二、出示学习目标

  1、知道乘法结合律,能运用运算定律进行一些简便运算。

  2、培养学生根据具体情况,选择算法的意识与能力,发展思维的'灵活性

  3、能用所学知识解决简单的实际问题。

  三、自学指导

  自学书本第25页的内容,自己完成以下的问题:

  主题图引入(观察主题图,根据条件提出问题。)

  一、自学提纲

  1、针对上面的问题1列出算式,有几种列法。

  2、为什么列的式子不同,它们的计算结果是怎样的。

  3、两个算式有什么特点?你还能举出其他这样的例子吗?

  4、能给乘法的这种规律起个名字吗?能试着用字母表示吗?

  5、乘法结合律有什么作用。

  6、根据前面的加法结合律的方法,你们能试着自己学习乘法中的另一个规律吗?

  7、这组算式发现了什么?

  二、 小组合作学习

  根据自学指导,交流汇报,验证。

  1、小组讨论乘法的结合律、结合律用字母怎样表示。

  2、各小组展示自己小组记定律的方法。

  3、分别说说是用什么方法记住这些运算定律的。

  4、讨论为什么要学习运算定律。

  先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。

  三、 交流汇报,集体订正

  四、 当堂训练

  1、下面的算式用了什么定律

  (60×25)×8=60×(25×8)

  2、 27/2—4 P25/做一做2

  3、在□里填上合适的数。

  30×6×7 = 30×(□×□) 125×8×40 =(□×□)×□

  四年级《乘法运算定律》教学设计 7

  教学内容

  P12页例8和做一做,练习二第2题

  教学目标

  使学生理解整数乘法的运算定律对于小数同样适用,并会运用乘法的运算定律进行一些小数的简便计算。

  知识重点

  乘法运算定律中数(包括整数和小数)的适用范围

  教学难点

  运用乘法的运算定律进行小数乘法的的`简便运算

  教学过程

  教学方法和手段

  教学过程

  1、计算:

  259542532448+64810256

  2、在整数乘法中我们已学过哪些运算定律?请用字母表示出来。

  根据学生的回答,板书:

  乘法交换律ab=ba

  乘法结合律a(bc)=(ab)c

  乘法分配律a(b+c)=ab+ac

  2、让学生举例说明怎样应用这些定律使计算简便。(注意学生举例时所用的数。)

  3、出示教材P.9页的3组算式:下面每组算式左右两边的结果相等吗?

  0.71.2○1.20.7

  (0.80.5)0.4○0.8(0.50.4)

  (2.4+3.6)0.5○2.40.5+3.60.5

  让学生看每组算式是否相等。

  ●从而得出结论:整数乘法的交换律、结合律和分配律,对于小数乘法同样适用。

  4、揭题并板书课题:整数乘法的运算定律推广到小数乘法。

  二、尝试

  1、出示例8第(1)题:0.254.784

  2、引导学生进行思维迁移:你能仿照整数乘法中,类似的题目的简算方法来计算这道题吗?请你试着做一下,指名板演。

  3、你能说一说每一步各应用了哪一条运算定律吗?根据学生的回答,板书:

  0.254.784

  =0.2544.78乘法交换律

  =14.78

  =4.78

  指出:用虚线框起来的部分可以省略。

  4、尝试后练习:关键是什么?(把........,用律完成)

  500.140.21.250.80.80.32.50.4

  生独立完成,师巡视辅导有困难的学生。指名板演,集体订正。

  5、示范:例7第⑵题:0.65201

  你认为此题的关键是什么?(把201变成200+1,用乘法分配律完成)

  你会做吗?谁来讲讲这道题的解题思路?(指名上台讲解演示)

  0.65201

  =0.65(200+1)

  =0.65200+0.65

  =130+0.65

  =130.65

  6、练习:

  0.78100.51.51021.22.5+0.82.5(提取公因数)

  生独立完成,师巡视辅导有困难的学生。指名板演,集体订正。

  三、运用

  1、P.12页做一做:用简便方法算下面各题。

  0.0340.50.61020.45

  =0.034(0.50.6)=(100+2)0.45

  =0.0340.3=1000.45+20.45

  =0.0102=45+0.9

  =45.9

  25+5.6-0.6200.0145

  =25+(5.6-0.6)=(200+0.01)45

  =25+5=20xx5+0.0145

  =30=900+0.45

  =900.45

  课堂练习

  小结与作业

  课堂小结

  今天,你有什么收获?

  课后追记

  本课应用的运算定律之前都有学过并在整数的简便计算中广泛应用,但是小数应用运算定律来简算,难点在与学生不知道要拆哪个数,如何搭配构建出符合运算性质的形式,之后才进行应用定律来简算。

  四年级《乘法运算定律》教学设计 8

  教学目标:

  1、经历乘法运算定律的猜想、验证过程。理解和掌握乘法交换律、乘法结合律(含用字母表示);

  2、能灵活应用乘法交换律和结合律进行简便计算,解决实际问题;

  3、猜想、验证、应用的过程中,培养学生自主学习的能力,发展学生学以致用的意识。使学生受到科学方法的启蒙教育。

  教学过程:

  一、比赛激趣,引发猜想

  1、谈话:在数学课堂中,大家都非常欣赏思维敏捷,反应快的同学,下面就给大家一个机会,我们进行一次计算比赛,看哪位同学最先博得大家的欣赏!

  2、教师报题,学生起立抢答。

  3、大家的速度都很快,很难分出高下,下面换一种比赛形式。

  (课件演示:一次性计算两道题,看谁算得既对又快。)

  4、启发猜想:这几天我们在学什么计算题,(笔算乘法)感觉怎样?联系刚才我们做的两题加法,你想到了什么?

  5、引导猜想:a、乘法中可能也有交换律和结合律;

  b、猜想怎么用字母来表示它们。

  {板书猜想结果:乘法交换律乘法结合律

  二、合作探究,举例验证

  1、引导验证方法:老师为什么要在等号上加“?”!谁有办法把问号去掉?

  请学生当即举一个乘法交换律的例子。(板书:学生所举例子,注:举例证明)

  质疑:举一个例子能证明这个运算定律的正确性吗?(可能是巧合)

  那怎么办?需要凝聚大家的力量一起举例!

  2、小组合作验证

  3、归纳两条乘法运算定律的文字叙述内容,揭示课题。

  三、学以致用,加强巩固

  四、课堂小结,拓展延伸

  本课的设计体现了以下几个特点:

  1、创造性地运用教材,落实“三维”教学目标。

  按照教参中的教学进程安排,乘法交换律和结合律需要分两课时完成。笔者认为将两课时合并为一课时,可以达到事半功倍的效果。首先,加法的交换律和结合律与乘法的交换律和结合律比较相似,由两条加法定律猜想到两条乘法定律,难度不大,十分自然。其次,两条乘法定律一起学,一方面有利于比较区分;另一方面,更利于实际应用,事实上在计算应用中,这两条定律通常是结合在一起应用的.。

  2、经历过程,强化体验,落实“三维”教学目标。

  从猜想→验证→应用的整个教学过程中,教师只是适当的启发、引导、参与。更多的是学生自发的学习,是学生感觉学习知识的需要而展开学习。如:由加法的简算快捷而受启发联想到乘法要是也有运算定律进行简算该多好!从而激起探索新知的渴望。再如:当体会到举一个例子无法验证说明问题,需要举更多的例子时,让学生考虑怎么办?从而讨论解决方法:大家一起举例。再如:得出结论后,当然想到拿学习成果应用于实际。这比由老师步步安排好学习步骤要好得多,不仅培养了学生的自主学习意识,而且学生的参与积极性也会高涨。

  3、科学思想和方法的渗透,落实“三维”教学目标。

  在数学知识领域内,“猜想→验证→结论”是十分有效的思考研究方法。有利于学生思维的发展和今后的学习。同时,在验证环节中涉及到常见的证明方法——举例证明。同时渗透了偶然和必然之间的辨证关系。总体上说:这节课的设计很好地体现了学生的自主性,给学生较大的自主探索空间,体现了数学逻辑思维的严谨美,训练了学生的思维。

  四年级《乘法运算定律》教学设计 9

  教学目标:

  1、使学生经历探索乘法运算律的过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。

  2、使学生经历比较,猜测,论证,应用的过程,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水平,进一步发展符号感。

  3、使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。

  教学重点:

  经历探索乘法交换律、乘法结合律的过程。

  教学难点:

  能运用乘法交换律、结合律进行简便运算。

  教学过程

  一、复习旧知,导入新课

  (前几节课我们已经学习了加法的运算定律,那你们会应用这些定律来解决问题吗?)

  出示:

  在下列○内填上合适的运算符号。

  4○10=10○4(2○3)○5=2○(3○5)。(让学生说出每一道题是运用什么加法运算定律。)

  谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。如果填加号是根据加法的交换律和结合律;那么在乘法中是否也有这些运算定律呢?

  3、导入新课。

  谈话:带着我们的猜测,今天我们就来研究乘法中的运算规律。

  1、情景中感知乘法交换律。

  出示例题。(略)

  谈话:请同学们看主题图。图中的小朋友在干什么?你能列出乘法算式求负责挖坑,种树的一共有多少人吗?

  学生列式:4×25=100或25×4=100。

  提问:我们知道,每组里有4人负责挖坑,种树,一共有25个小组,可以列式4×25,也可以列式25×4。所以,这两道算式可以用什么符号联结?

  板书:4×25=25×4。

  2、举例验证。

  谈话:我们知道4×25=25×4,你能再写出一些这样的等式吗?

  学生举例。

  引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?

  (学生列出几个算式,在学生列出的算式中让学生分别说出左右两边得数是否相等,再写等号。)

  3、总结规律。

  讨论:你写出的每一个等式左右两边的`算式中什么变了,什么不变?(每组算式等号两边的两个因数相同,积也相同,不同的是两个因数交换了位置。)

  师:对,像这样两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。利用课件出示此规律

  提示:你用字母来表示乘法的交换律吗?

  板书:a×b=b×a。

  提问:等式中的a和b可以分别表示什么数?

  生:a和b可以表示任何不相同的数。

  4、回忆乘法交换律在过去学习中的运用。

  谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?

  (学生可能想到:

  1、根据一句口诀可以算两道乘法算式;二三得六。

  2、用调换因数的位置再乘一遍的方法验算乘法等。教师根据学生回答用媒体演示相关内容。)

  师:在验算乘法时,可以用交换因数的位置,再算一遍的方法进行验算,就是用了乘法交换律。

  (二)探索乘法结合律。

  1、初步感知。

  谈话:刚才我们认识了乘法交换律,现在我们继续来研究乘法的运算定律。

  出示例题。(略)

  谈话:一共要浇多少桶水,你会列式计算吗?

  组织学生交流。[选择列为(25×5)×2和25×(5×2)的同学板演]

  (也选择25×2×5的同学。先分析这种让学生说说这种列式在题目中表示什么?通过分析让学生明白“25×2”列式没有意义,删除此列式。)

  2、引导比较。

  提问:两道算式完全一样吗?你发现了什么?(都是求一共要教多少桶水,都是把25、5、2三个数相乘,运算顺序不同,计算结果一样,两个算式也可以用符号连接)

  板书:(25×5)×2=25×(5×2)

  下面根据前面举例研究运算定律的方法,请大家同桌合作写一写,说一说,试着自己学习

  课件出示:

  合作讨论:

  (1)等号两边的算式中什么变了,什么不变?把你的发现说给你的同桌听。

  (两个算式中都是三个因数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。)

  请大家大胆猜测一下,是不是所有的乘法算式中,先把哪两个因数相乘,积都保持不变呢?

  (2)举例验证:写出几组这样的算式,并算一算。

  (3)你从这些算式中发现什么规律?用语言表述规律,并起名字。

  (课件出示:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,它们的积不变,这叫做乘法的结合律。)

  (4)如果用a、b、c分别表示三个因数,你能用含有字母的式子表示吗?

  板书:(a×b)×c=a×(b×c)。

  小组汇报。教师板书整理。

  谈话:刚才我们通过观察—猜测—举例验证—得出结论,找到了乘法结合律,接下来请同学们应用我们今天学习的知识解决问题。

  三、尝试运用,理解规律

  1、根据乘法运算定律,在里填上适当的数。

  15×16=16×

  25×7×4=××7

  (60×25)×=60×(×8)

  125×(8×)=(125×)×14

  4×8×25×125=(4×25)×(×)

  请每一个同学回答出每一道题目是运用了乘法的什么定律。

  2、下面每组算式的得数是否相等?如果相等选择你喜欢的一种算出得数。

  4×9×257×125×811×(25×4)

  4×25×97×(125×8)25×11×43、使用简便方便计算。

  6×4×255×125×6×8

  四、引发联想,鼓励探究

  谈话:同学们,今天我们通过猜想、举例验证的方法研究了乘法的交换律和结合律,既然加法和乘法都有交换律和结合律,那你有没有想过减法和除法会有什么运算规律呢?你可以选择下面的一组或几组算式先计算,然后再观察、比较,看你能不能有新的猜想?你有办法验证你的猜想吗?

  127—53——27—53

  72÷3÷872÷8÷3

  四年级《乘法运算定律》教学设计 10

  教学目标

  1.掌握小数的连乘、乘加、乘减的运算顺序,并能按运算顺序正确计算。理解整数乘法运算定律同样适用于小数乘法。

  2.提高学生类推迁移能力。

  教学重点

  掌握小数乘法的运算顺序和运算定律的应用。

  教学难点

  掌握小数乘法运算定律的应用。

  教学过程

  一、复习

  (一)口算

  20×30 1.2×0.2 0.5×4 300-100÷5

  90×10×3 25×4-70 43×20×5 11×0.6

  23×101 25×19×4 40×8+50 19×26+19×74

  (二)先说一说每道题的运算顺序,再计算。

  12×5×60 30×7+85 250×4-320

  二、新课

  (一)运算顺序

  把上面复习题2稍作变动(加上小数点),让学生说一说改动后的运算顺序是什么?

  变成:1.2×0.5×60 30×0.7+8.5 2.5×4-3.2

  教师板书:小数的运算顺序跟整数一样。

  (二)教学例6

  光明小学的同学们在校园里种了300棵蓖麻,平均每棵收蓖麻籽0.18千克,每千克蓖麻籽可榨油0.45千克,一共可榨油多少千克?

  1.应该怎样列式?

  0.45×0.18×300

  2.怎样计算?

  教师板书:0.45×0.18×300

  =0.081×300

  =24.3(千克)

  答:一共可榨油24.3千克。

  3.还能怎样列式?

  4.练习

  72×0.81+10.4 7.06×2.4-5.7

  (三)运算定律

  1.引导性谈话:整数运算与小数运算有着密切的联系,比如小数的连乘、乘加、乘减的运算顺序与整数和连乘、乘加、乘减完全相同,整数乘法中有交换律、结合律和分配律,这些运算定律在小数乘法中能适用吗?

  2.举例说明:0.7×1.2○1.2×0.7

  (0.8×0.5)×0.4○0.8×(0.5×0.4)

  (2.4+3.6)×0.5○2.4×0.5+3.6×0.5

  3.小结:整数乘法的交换律、结合律和分配律,对于小数乘法同样适用。

  (四)教学例7

  计算:(1)0.25×4.78×4(2)0.65×201

  1.第一道题你打算怎么计算?应用了什么定律?

  2.第二道题你打算怎么计算?应用了什么定律?

  教师板书:0.25×4.78×4 0.65×201

  =0.25×4×4.78=0.65×(200+1)

  =1×4.78=0.65×200+0.65×1

  =4.78=130+0.65

  =130.65

  3.填空

  4.2×1.69=□×□ 2.5×0.77×0.4=(□×□)×□

  6.1×3.6+3.9×3.6=(□×□)×□

  三、质疑

  (一)今天的学习,你都知道了什么?

  (二)学完这节课,你有什么体会或感受想向大家说吗?

  (三)对今天所学的`知识还有什么不懂的问题?提出来供大家研究。

  四、巩固练习

  (一)下面的计算对吗?把不对的改正过来。

  50.4×1.95-1.9 3.76×0.25+25.8

  =50.4×0.05=0.9776+25.8

  =25.2=26.7776

  (二)计算下面各题

  19.4×6.1×2.3 5.67×0.21-0.62

  3.25×4.76-7.8 7.2×0.18×28.5

  18.1×0.92+3.93 0.043×0.24+0.875

  (三)玉山农场新建一座温室,室内耕地面积是285平方米,全部栽西红柿,平均每平方米产6千克。每千克按0.65元计算,一共可以收入多少元?

  五、课后作业

  (一)计算下面各题,能用简便方法算的用简便方法算。

  2.02×8.5 1.25+4.6+0.75 2.33×0.5×0.4×5

  48×0.25 3.4×7×1.5 1.6×7.5×1.25

  (二)松柏林能分泌杀菌素,可以净化空气,如果1公顷松柏林每天分泌杀菌素54千克,24.5公顷松柏林31天分泌杀菌素多少千克?

  (三)一种花布的售价1米16.2元,请用计算器算出3.6米,12米,8.5米的花布的总价是多少?

  四年级《乘法运算定律》教学设计 11

  教学目的:

  使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。

  教学过程:

  一、复习

  教师:我们在前面复习总结了加法和减法,今天要复习总结乘法。

  教师出示复习题。

  1.同学们乘坐8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多少人?

  2.同学们做纸花。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?

  3.小荣家养鸭45只,养的鸡的只数是鸭的3倍。小荣家养鸡多少只?

  4.小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

  先让学生默读题目,然后教师提问:

  上面这些题目哪些题可以用乘法计算?为什么?请三、四个学生逐题回答能不能用乘法计算。

  教师:第1题和第3题可以用乘法计算,因为这两道题都是求几个相同加数的和。

  二、新课

  1.教学例1。

  出示例1的插图,再提问:

  要求盘里一共有多少个鸡蛋可以怎样求?

  还可以怎样求?

  学生回答后教师板书:

  用加法计算:5+5+5+5+5+5=30(个)或6+6+6+6+6=30(个)

  用乘法计算:56=30(个)或65=30(个)

  乘法算式5乘6表示什么?(6个5相加。)

  乘法算式6乘5表示什么?(5个6相加。)

  乘法算式中的一个因数是加法算式中的什么数?(相同的加数。)

  乘法算式中的另一个因数是加法算式中的什么数?(相同的加数的个数。)

  解答这道题用加法计算简便,还是用乘法计算简便?

  求几个相同加数的和可以用什么方法计算?用哪些方法比较简便?

  你能说出乘法是什么样的运算吗?

  乘法算式中乘号前面的数叫什么数?表示什么?

  乘法算式中乘号后面的'数叫什么数?表示什么?

  教师肯定学生的回答,再强调说明并板书:求几个相同加数的和的简便运算,叫做乘法。相乘的两个数叫做因数,乘得的数叫做积。接着让学生看教科书第59页,齐读两遍书上的结语。

  2.教学一个数和1与0相乘的乘法。

  (1)教学一个数和1相乘。

  教师在黑板上写出三个算式:13、31、11。

  1乘3等于什么?这个算式表示什么意思?学生回答后教师板书:13=3,表示3个1相加的和是3。

  3乘1等于什么?这个算式表示什么意思?可以多让几个学生说一说。最后教师说明:1个3不能相加,3乘1就表示1个3还是3,再板书31=3。

  1乘1等于什么?能不能说这个算式表示1个1相加?先让学生说一说,然后教师再说明:1个1不能相加,1乘1就表示1个1还是1,算式是:11=1。

  这三个乘法算式都和哪个数有关系?(都和1有关系。)

  下面我们一齐看一看一个数和1相乘它们的乘积怎样,教师在黑板上写出下面一些算式:

  61=18=110=1231=

  谁能说一说一个数和1相乘的积有什么特点?可以多让几个学生说一说。

  教师边说边板书:一个数和1相乘,仍得原数。

  (2)教学一个数和0相乘。

  教师在黑板上写出三个算式:03=30=00=

  0乘3等于什么?这个算式表示什么意思?学生回答后教师板书:03=0表示3个0相加的和是0。

  3乘0等于什么?能不能说这个算式表示0个3相加?先让学生回答,教师再说明:0个3不能表示0个3相加,3乘0就表示0个3还是0。板书:30=0

  0乘0呢?学生回答后,教师说明:0个0不能相加,0乘0就表示0个0还是0,算式是:00=0。

  这三个算式都和哪个数有关系?(都和0有关系。)

  一个数和0相乘它们的积有什么特点?

  教师边说边板书:一个数和0相乘,仍得0。

  3.教学例2。

  让学生再看例1的插图,然后教师提问:

  要求一共有多少鸡蛋,用乘法计算可以这样列式:56=30(个)或65=30(个)

  比较一下这两个乘法算式,有哪些相同?有哪些不同?多让几个学生发言,互相补充。

  教师:这两个算式都是两个数相乘,只是两个因数交换了位置,算出的结果相同。下面我们一起来看一下这个结论是不是有普遍性。

  出示例2观察下面每组两个算式,它们有什么样的关系?

  125〇51240020〇20400

  12乘5等于多少?5乘12呢?学生口算,教师板书。

  400乘20等于多少?20乘400呢?学生口算,教师板书。

  通过上面这些乘法计算,可以看出两个数相乘,交换因数的位置,计算结果怎样?

  学生发言后,教师边说边板书:两个数相乘,交换因数的位置,它们的积不变,这叫做乘法交换律。

  谁能够用字母把乘法交换律表示出来?教师板书:ab=ba

  大家回忆一下,我们过去学习哪些知识时用了乘法交换律?学生发言后,教师肯定学生的回答,并明确指出:我们曾经用交换因数位置的方法进行乘法验算,这实际上就是应用了乘法交换律。

  三、巩固练习

  做第60页做一做中的题目。先让学生独立做,然后再集体核对。

  2.做练习十三的第1题。

  2.做练习十三的第3、4题。学生独立做完以后,再集体核对。核对第4题的第4小题时,可以引导学生计算一下等号左面等于什么,等号右面等于什么。教师再说明:三个数连乘,相乘的因数交换了位置,乘积也不变,所以乘法交换律也适合三个数连乘的计算。

  四、作业

  练习十三的第1题。

  四年级《乘法运算定律》教学设计 12

  学情分析

  乘法运算定律与之前所学的加法运算定律类似,学生理解起来难度不大,但是本班有三名学困生,需要重点关注和引导他们,掌握乘法运算定律。乘法运算定律不仅有助于加深乘法计算方法的理解,还能使计算简便,所以需要学生理解并注意与加法运算定律的区别。本节课的讲授注重从生活实际创设情境引入课题,并充分利用之前所学的加法运算定律,由学困生和其他学生一起来类比归纳乘法运算定律,充分调动学困生积极性。

  教材分析

  学生对乘法交换律在以前的学习中已有初步认识,在作业或者练习中已经接触过当一个乘法算式里的因数交换位置后,通过计算会发现它们的积并不变。这节课利用例子,让学生特别是学困生观察、发现对任意两个整数相乘有同样的性质,从而总结出“乘法交换律”。对于乘法结合律这部分内容,教材是在学生已经掌握了乘法的意义,并且对乘法交换律有了初步认识的基础上进行教学的。正确理解掌握乘法运算定律,可以加深学生对计算方法的灵活性选择,同时,对今后整数的乘法、有理数的乘法都有一定的作用,因此学好乘法运算定律,在数学中具有重要的基础地位和桥梁作用。

  教学目标

  知识与技能:引导学生探究和理解乘法交换律、结合律。

  过程与方法:培养学生根据具体情况选择算法的意识与能力,发展思维的灵活性。

  情感态度与价值观:使学生感受数学与现实生活的.联系,能用所学知识解决简单的实际问题。

  教学重难点

  重点:引导学生探究和理解乘法交换律、结合律。

  难点:能用所学知识解决简单的实际问题。

  教学方法

  教法:教师通过创设情景、启发、引导相结合的方式进行课堂教学。

  学法:学生通过观察比较、发现交流、练习的方式进行课堂学习。

  教学准备

  课件、练习纸。

  教学过程

  一、复习导入

  师:同学们,前面我们学习了什么运算定律?

  学困生1:加法交换律、加法结合律。

  师:加法交换律、加法结合律用字母怎样表示?

  学困生2:a+b=b+a

  学困生3:(a+b)+c=a+(b+c)

  师:其实乘法也满足一些运算定律,你想知道乘法满足哪些运算定律吗?(想)

  好,今天我们就来学习乘法运算定律。

  (板书课题:乘法运算定律)

  设计意图:通过复习加法交换律、加法结合律,为即将要学的乘法交换律和乘法结合律作铺垫,促进知识之间的迁移。

  二、探究新知

  你知道植树节是几月几日吗?

  1、教学乘法交换律。

  (课件出示教材情景图)

  师:你从图中可以得到哪些数学信息?

  学困生2:一共有25个小组,每组里4人负责挖坑、种树……

  师:要求什么问题?

  学困生2:负责挖坑、种树的一共有多少人?

  师:怎么列式?

  学困生1:4×25

  生:还可以这样列式25×4

  设计意图:图片以植树为背景,展示了植树过程中同学们挖坑、种树、抬水、浇树等活动的情境。通过情境图让学生认识植树活动中的数学知识,并能利用这些知识解决数学问题。

  师:计算这两个算式的积是多少?

  生:都是100

  师:4×25=25×4(板书)

  师:你能仿照这个式子再举几个这样的例子吗?

  生:能。

  让学生举例。

  师:这样的例子能举完吗?

  生:不能。

  师:请仔细观察这些式子有什么特点?

  生:因数不变,积相等,因数位置变化。

  师:这就是乘法交换律。

  设计意图:让学生先计算,观察,比较,初步感知规律,再举例验证,渗透举例验证这一数学方法,进而发现规律。这样设计,学生不仅理解了乘法交换律的验证过程,也让学生经历了知识的形成过程,感受到学习活动中成功的喜悦,增强学生学习数学的信心。

  你自己尝试总结乘法交换律。

  生:交换两个因数的位置,积不变。

  师:很好,两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律。

  师:你能用字母表示乘法交换律吗?

  生:能。

  师:把它表示在练习纸上。

  学困生2回答。

  设计意图:总结发现的规律,培养学生的概括能力和语言表达能力,用字母表示定律,使知识点由抽象向具体过渡,建构模型,渗透了“符号化”思想,使学生理解数学的抽象性并体会了符号的简洁性,加强对知识的理解和运用能力。

  2、教学乘法结合律。

  师:刚才同学们通过学习,知道乘法也有交换律,那么乘法中会不会也有结合律呢?下面我们继续观察植树情景图。

  (课件出示植树情景图)

  师:一共需要浇多少桶水?怎么列式?

  学困生1:(25×5)×2生:25×(5×2)

  师:你能说出每个算式的意义吗?

  学困生1:算式(25×5)×2中,25×5是先算一共种了多少棵树,再算一共要浇多少桶水。

  生:算式25×(5×2)中,5×2是先算每个小组要浇多少桶水,再算25个小组一共要浇多少桶水。

  设计意图:通过发现情景图中的数学信息,让学生自己寻找要解决这一数学问题的方法,提高解决问题的能力。

  师:把它计算在练习纸上。

  做完后让学困生3和其他学生写在黑板上。

  师:通过上面的计算,你发现什么?

  生:积相等。

  师:(25×5)×2=25×(5×2)

  师:你能再举几个这样的例子吗?

  生:能。

  学困生2和其他学生举例。

  师:这样的例子能举完吗?

  生:不能。

  师:请仔细观察这些式子有什么特点?

  生:因数不变,积相等,运算顺序不同。

  师:这就是乘法结合律。

  师生一起概括乘法结合律。

  三个数相乘,先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。

  设计意图:利用乘法交换律的方法来总结乘法结合律,培养学生类比、迁移能力和抽象概括的能力,引导学生由感性认识上升到一定的理性认识。

  师:你能用字母表示乘法结合律吗?

  生:能。

  师:把它表示在练习纸上。

  设计意图:学生用字母表示定律,有利于培养学生的数感,提高对知识的概括和运用能力。

  师:比较(25×5)×2和25×(5×2)的算法,哪种计算简便?为什么?

  学困生1:第二种,后两个数先乘是整十,容易计算。

  师:对。运用乘法运算定律也可以简便计算。

  设计意图:让学生比较两种算法,发现运用乘法运算定律能够简便运算,了解乘法运算定律的作用。

  师:前面我们学过了加法的两个运算定律,我们来比较一下加法交换律和乘法交换律,加法结合律和乘法结合律,你有什么发现?

  生:相同点:交换律是交换两数的位置,数和结果不变;结合律是改变运算顺序,数和结果不变。不同点:加法交换律和加法结合律中的数之间是加号连接,数叫加数,结果叫和;乘法交换律和乘法结合律的数之间是乘号连接,数叫因数,结果叫积。

  设计意图:对知识进行分类梳理是学生学习数学的必备基本功,教学中,将加法的运算定律和乘法的运算定律进行分类梳理,提高学生的类比思维能力,熟知两种定律的区别,对两种定律认识更清晰,应用更熟练。

  三、巩固练习

  1、在里填“>”“

  36×1919×36 27×4×2527×(4×25)

  125××8×3 67×868×7

  学困生2回答。

  2、根据乘法运算定律填上合适的数。

  12×32=32×___ 108×75=___×___

  学困生3回答。

  30×6×7=30×(6×___)

  125×(8×40)=(___×___)×___

  其他学生回答。

  设计意图:通过练习,加深对知识的理解,起到巩固知识和灵活运用知识的作用。

  四、归纳总结

  这节课有什么收获呢?

  生1:我们今天学习了乘法的两个运算定律——乘法交换律和乘法结合律,并会用字母表示这些运算定律。

  生2:乘法运算定律与加法运算定律的对比,让我知道了它们的区别。

  设计意图:培养学生归纳、整理、总结知识能力和语言表达能力,让学生进一步明确本节课所学内容,以及一些基本的数学思想和方法。

  五、课堂检测

  完成后对答案,互判。

  设计意图:了解学生掌握情况。

  六、布置作业

  课本27页练习七第1、2、3题。

  设计意图:巩固乘法运算定律。

  七、板书设计

  乘法运算定律

  25×4=4×25

  (25×5)×2=25×(5×2)

  a×b=b×a

  (a×b)×c=a×(b×c)

【四年级《乘法运算定律》教学设计】相关文章:

复习加法和乘法的运算定律数学教学教案04-03

《加法运算定律》教学设计(通用7篇)05-06

数的运算的教学设计10-22

《楞次定律》教学设计12-18

《混合运算》教学设计范文11-28

小数乘法教学设计06-15

乘法的估算教学设计11-15

“乘法估算”教学设计11-19

认识乘法教学设计03-11