- 相关推荐
六年级数学下册《反比例》教学设计(通用13篇)
作为一无名无私奉献的教育工作者,编写教学设计是必不可少的,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么问题来了,教学设计应该怎么写?以下是小编帮大家整理的六年级数学下册《反比例》教学设计,欢迎阅读,希望大家能够喜欢。
六年级数学下册《反比例》教学设计 1
一、教材分析
反比例的内容是前面学习“变化的量”、“正比例”等比例知识的深化,是以后学习函数的基础,有着承前启后的作用,是小学阶段比例初步知识教学中的一个重要内容。
二、教学目标
以《新课改标准》为依据,综合小学数学教材编排意图,我确定了以下教学目标:
1、认知目标:通过感知生活中的事例,认识理解并掌握反比例的意义,能够初步的判断两种相关联的量是否成反比例。
2、能力目标:学生在互动、探究的合作交流活动中,培养观察、思考、比较、归纳概括的能力。
3、情感目标:让学生在自主探究、合作交流的过程中感受反比例关系在生活中的广泛应用。
三、教学重难点
教学重点:理解反比例的意义。
教学难点:掌握判断两种量是否成反比例的方法。
四、教学过程
基于以上的各种分析和设想,我将按照以下环节进行课堂教学:
(一)故事导入,导课揭题:
讲《财主和帽子的故事》,引出新课。
如果总布量一定,每顶帽子用布量和帽子的数量之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?(板书课题:反比例)
(设计目的:以故事导入课题,让学生通过故事初步感受反比例的意义,激发了学生的学习兴趣。)
(二)教师引导,自主探究:
1、课件出示“加法表”和“乘法表”,认识加法表中和是12的直线及乘法表中积是12的曲线。初步感知理解两个量的变化关系的不同。
设疑:这两种量是不是今天我们所学的反比例呢?这个问题放在后面再解答,同学们先看下面的题目。
2、王叔叔要去游长城。不同的交通工具所需时间如下,请把下表填完整。
[提示]
a.说一说你的结果是根据什么来填的?
b.观察速度与时间这两种量,是怎样变化的?
c.你还发现了什么?
先让学生同桌之间交流,再指名学生口答讨论的结果。板书速度×时间=路程(一定)
3、出示“分果汁”的情境
请同学们按照刚才的方法,自己完成本题,仔细想想你
发现了些什么?学生观察思考后,小组讨论:果汁的总量不变,当杯子的数量发生变化时,每个杯子分到的果汁量有发生变化吗?变化的规律是怎样的?
板书:每杯的果汁量×分的杯数=果汁总量(一定)
4、小组交流讨论概括反比例的意义。
(1)综合例2、例3的共同点。
提问:请你比较一下例2和例3,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义及判断反比例的方法。
5、讨论“加法表”和“乘法表”是否成反比例。
6、运用所学知识判断《财主和帽子的故事》是否成反比例。
(设计意图:通过观察具体的情境,让学生在思考交流合作、比较的基础上,归纳反比例的概念,总结判断两个量是不是成反比例的方法。最后对加法表和乘法表两种关系进行分析讨论,解决了一开始提出的问题,巩固了本节课的教学内容。)
(三)巩固练习
1、判断下面每题中的`两个量是否成反比例,并说明理由:(指名回答)
(1)跳高的高度和她的身高。
(2)苹果的单价一定,购买苹果的数量和总价。
(3)张伯伯骑自行车从家里到县城,骑自行车的速度和所需时间。
(4)煤的总量一定,每天的烧煤量和能够烧的天数。
(5)生产电视机的总台数一定,每天生产的台数和所需天数。
2、找一找生活中还有哪些反比例的例子。
(设计意图:通过练习题,运用正反比例的知识判断
两个量是不是成发比例,进一步加深了学生对反比例的认识,又巩固了正比例的相关知识。最后,通过找一找的环节,让学生感受反比例在生活中的广泛应用。)
(四)课堂小结
这节课你有什么收获?把你的收获告诉大家。在生活
中还有很多反比例的例子,请同学们在生活中细心观察。
(设计意图:让学生反思本节课所学,把自己的收获告诉同学,这一过程,是知识的再现的过程,又是再次学习和巩固的过程。)
五、板书设计:
反比例
速度×时间=路程(一定)
每杯的果汁量×分的杯数=果汁总量(一定)
六年级数学下册《反比例》教学设计 2
教学目标
1、知识与技能目标:使学生认识成反比例的量,理解反比例的意义,并学会判断两种相关联的量是否成反比例。进一步培养学生观察、学析、综合和概括等能力。初步渗透函数思想。
2、过程与方法:为学生营造一个经历知识产生过程的情境。
3、情感与态度目标:使学生在自主探索与合作交流中体验成功的乐趣,进一步增强学好数学的信心。
教学重点:
理解反比例的意义。
教学难点:
两种相关联的量的变化规律。
教学过程
一、谈话引入,激发兴趣。
1、谈话:通过最近一段时间的观察,我发现同学们越来越聪明了,会学数学了,这是因为同学们掌握了一定的数学学习的基本方法。下面请回想一下,我们是怎样学习成正比例的量的?这节课我们用同样的学习方法来研究比例的另外一个规律。
2、导入:在实际生活中,存在着许多相关联的量,这些相关联的量之间有的是成正比例关系,有的成其他形式的关系,让我们一起来探究下面的问题。
二、创设情景引新
(出示:十二个小方块)
师:同学们,这十二个小方块有几种排法?
(生答后,老师板书下表的排列过程)
每行个数1234612
行数1264321
师:请你观察上表中每行个数与行数成正比例关系吗?为什么?
生:……
师:这两种量这间有关系吗?有什么关系?这就是我们今天要研究的内容。
(出示课题:反比例的意义)
三、合作自学探知
1、学习例4。
(1)出示例4。
师:请同学们在小组内互相交流,并围绕这三个问题进行讨论,再选出一位组员作代表进行汇报。
A、表中有哪两种量?
B、怎样随着每小时加工的数量变化?
C、每两个相对应的数的乘积各是多少?
学生讨论……
生反馈:……
师:能不能举出三个例子
生:10×20=60020×30=60030×20=600……
师:这里的600是什么数量?你能说出这里的数量关系式吗?
生:……
[板书出示:每小时加工数×加工时间=零件总数(一定)]
2、自学例5:
(1)出示例5:
师:先请同学们按要求在书上填空,并说说是怎样算的.?根据什么?
生:……
师:模仿例4的方法,提出三个问题自己学习例5(出示三个问题)
生:……
3、讨论准备题:
(1)请你根据例4的方法,四人小组内说一说。
(2)请你举例说明表中每行个数与行数是什么关系?为什么?
四、比较感知特征
综合例4、例5、准备题的共同点师:比较一下例4、例5和准备题,请同学们在小组中讨论一下,互相说说这三个题目有什么共同的特征?
生:……
五、引导概括意义
1、概括反比例意义。
学生在说相同点时老师边引导边说明。当学生说出三个特征后,教师板书这三个特征。
师:请同学们根据我们上节课学的正比例的意义猜测一下,符合三个特征的二个量叫做成什么量?相互这间成什么关系?
生:……
师:请阅读课本第十六页,同桌互相说说怎样的两个量成反比例关系。
学生互相练习……
师:哪位同学来告诉大家,两种量如果成反比例必须符合哪三个条件?
生:……
师:例4、例5和准备题中的两种量成不成反比例?为什么?
生:……(学生回答后,老师及时纠正)
师:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?
生:……[板书出示:x×y=k(一定)]
2、教学例6。
(1)课件出示例6。
(学生读题、思考)
师:怎样判断两种量成不成反比例?
师:哪位同学说说,每天播种的公顷数和要用的天数是不是成反比例?为什么?
生:因为每天播种的公顷数×要用的天数=播种的总公顷数(一定),所以每天播种的公顷数和要用的天数是成反比例的量。
六、小结:
这节课同学们学到了哪些知识?运用了哪些学习方法?还有哪些不懂的问题?
六年级数学下册《反比例》教学设计 3
教学目标:
1、通过感知生活中的事例,理解并掌握反比例的含义,经初步判断两种相关联的量是否成反比例
2、培养学生的逻辑思维能力
3、感知生活中的数学知识
重点难点
1、通过具体问题认识反比例的量。
2、掌握成反比例的量的变化规律及其特征
教学难点:
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学过程:
一、课前预习
预习24---26页内容
1、什么是成反比例的量?你是怎么理解的?
2、情境一中的两个表中量变化关系相同吗?
3、三个情境中的两个量哪些是成反比例的量?为什么?
二、展示与交流
利用反义词来导入今天研究的`课题。今天研究两种量成反比例关系的变化规律
情境(一)
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
情境(二)
让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每
两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考
同桌交流,用自己的语言表达
写出关系式:速度×时间=路程(一定)
观察思考并用自己的语言描述变化关系乘积(路程)一定
情境(三)
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系
写出关系式:每杯果汁量×杯数=果汗总量(一定)
5、以上两个情境中有什么共同点?
反比例意义
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。
活动四:想一想
二、反馈与检测
1、判断下面每题是否成反比例
(1)出油率一定,香油的质量与芝麻的质量。
(2)三角形的面积一定,它的底与高。
(3)一个数和它的倒数。
(4)一捆100米电线,用去长度与剩下长度。
(5)圆柱体的体积一定,底面积和高。
(6)小林做10道数学题,已做的题和没有做的题。
(7)长方形的长一定,面积和宽。
(8)平行四边形面积一定,底和高。
2、教材“练一练”P33第1题。
3、教材“练一练”P33第2题。
4、找一找生活中成反比例的例子,并与同伴交流。
板书设计:反比例
两个相关联的量,乘积一定,成反比例
关系式:X×Y=K(一定)
课后反思:
本课时教学设计特点:一是情景设置和几个表格的设计,都注重从现实题材出发,让学生感受到反比例在现实生活中的广泛应用。二是通过让学生自己去分类整理、自主探究、合作交流得出反比例的意义,有利于发展学生的数学思维。
六年级数学下册《反比例》教学设计 4
教学内容:
教材第99~102页例1~例3。
教学要求:
1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
教学重点:
认识反比例关系的意义。
教学难点:
掌握成反比例量的变化规律及其特征。
教学过程:
一、铺垫孕伏:
1.正比例关
系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2.下面哪两种量成正比例关系?为什么?
(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?
4.引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)
二、自主探究:
1.教学例2。
出示例2某运输公司要运一批300吨的货物。让学生计算并完成填表任务。
每天运的数量(吨)1020304050
所需的天数
在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。
指名学生口答讨论的结果,得出:
(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。
(2)每天运的吨数缩小,需要的天数反而扩大,每天运的'吨数扩大,需要的天数反而缩小。
(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)
2.教学例1
出示例1。
请同学们按照刚才学习例4的方法,自己学习例1,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积比变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的?
3.概括反比例的意义。
(1)综合例1、例2的共同点。
提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义。
例1、例2里两种相关联的量,它们是什么关系的量呢?请同学们看第101页1~3自然段。说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。
4.具体认识。
(1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,例2里的两种量成反比例关系吗?为什么?
(2)提问:看两种相关联的量成不成反比例,关键要看什么?
(3)判断。
现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。
5.教学例3。
出示例3,看书自学,小组讨论,集体交流。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?
三、巩固练习
用刚才我们说的判断方法来做几道题。
1.做练一练。
指名学生口答,说明理由。(可以写出数量关系式看一看)
2.下题两种相关联量成不成反比例?为什么?
一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。
3.做练习十二第1题。
四、课堂小结
这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?
五、课堂作业
练习十二第2~4题。
六年级数学下册《反比例》教学设计 5
教学内容
教科书第59页例2及练习十三4~6题。
教学目标
1.能运用反比例知识解决简单的实际问题,培养学生的数学应用意识和解决问题的能力。
2.经历探索反比例应用的学习过程,体会反比例知识与生活的联系。
3.使学生感受事物的普遍联系,受到辩证唯物主义观点的启蒙教育。
教学重点
根据反比例的意义解决有关反比例的实际问题。
教学难点
理解反比例应用题的解题思路。
教学准备
教师先准备好复习题和增加的练习题。
教学过程
一、激趣引入,复习铺垫
1.运一堆煤
车的载重量(t)
辆数(辆)
根据表格中的内容,你能写出多少个等量关系式?
2.判断
(1)当速度一定,路程和时间成什么比例?为什么?
(2)当时间一定,路程和速度成什么比例?为什么?
(3)当路程一定,速度和时间成什么比例?为什么?
教师:运用反比例和以前学过的知识,我们可以解决生活中的一些问题。
板书课题:反比例的应用
二、合作学习,探索方法
1?教学例2
引导学生理解题意,找出题中的两种量。
反馈:速度和时间是两种相关联的量。
教师:看到这两种量,你还联想到了哪种量?(路程)
教师:上题中路程是一定的量吗?
着重引导学生明白:"青年突击队"参加泥石流抢险,从出发到目的地的路程是一定的。
教师:路程一定,速度和时间成什么关系?为什么?
反馈:速度和时间是两种相关联的量,速度扩大或缩小几倍,时间反而缩小或扩大相同的倍数,它们的积(路程)一定,所以速度和时间成反比例。
2.解答例2
(1)接着出示例2后面的内容:"出发时接到紧急通知要求3时之内必须到达,他们每时至少需行多少千米?"
让学生说出,现在增加的这个条件和问题应该对应在表的哪个位置?突出让学生找准对应关系。
(2)合作学习:要求学生独立思考后,再试着用多种方法解答这个问题,然后在小组内交流。
交流要求:把思路和解答方法说给自己小组的成员听,把同组同学认为正确的解答方法,请组长板书在黑板上。如果有其他组长已经写在黑板上了,另一组长就不再板书同样的解决方法。如果你用的解答方法,同组的同学不能准确判断对错,或者引起了争议的解答方法,可以自己上来把它板书在黑板上。
学生活动,教师巡视指导。(把黑板分成3大块,供学生板书解答方法)
(3)集体交流,结合黑板上的板书,师生共同理解解法:
预设方法1:6×4÷3=8(km)
抽生说出,算式6×4表示什么意思?
预设方法2:解:设他们每时至少行xkm。
3x=6×4
x=24÷3
x=8
教师:这样列式的根据是什么?
反馈:根据速度和时间成反比例,它们的路程相等,列出等量关系。
预设方法3:解:设他们每时至少行xkm。
6∶x=3∶4或x∶6=4∶3
这种列式的方法有时会在学生中出现,应该由写这种解答方法的.同学来说说他的想法。在这里主要还得根据课堂上学生出现的各种解法来引导他们理解解题思路。
三、巩固应用,促进发展
1.基本练习
(1)将例2的最后一句话改编成2道应用题。
如果要想2时到达,他们平均每时需行多少千米?
如果每时行8km,要几时才能到达目的地?
(2)练习十三第4题,先独立完成,再集体订正。
2.对比练习
(1)完成练习十三5题和6题。
教师引导提示:题中有哪两种相关联的量?哪种量是一定的?根据一定的量找出它们的等量关系,再解答。
(2)补充练习:修一条路,原计划每天修400m,25天完成。实际前4天修m,照这样的速度,修完要用多少天?(沟通区别与联系)
小组讨论后反馈:
①每天的米数--天数②总米数--天数
反比例知识解答:÷4×x=400×25
正比例知识解答:∶4=(400×25)∶x
提问:为什么一道题既能用正比例解答又能用反比例解答呢?
引导学生明白:因为题中既有速度(照这样的速度)一定,也有总米数(一条路长度)一定。
在解答时,一定要认真审题,具体问题具体分析。
说一说生活中还有哪些问题可以用反比例来解答。
四、今天这节课你有什么收获?说听听。
六年级数学下册《反比例》教学设计 6
教学内容:
成反比例的量。
教学目的:
使学生理解反比例的意义,会正确判断两种相关联的量是否成反比例,培养学生判断能力。
教学重点、难点:
反比例的意义和正确判断成反比例的量。
教具准备:
小黑板、投影片。
教学过程
一、复习
1、口答正比例的意义。
2、怎样判断两种量成正比例?
3、写出下面各题的数量关系,并判断在什么条件下,其中哪两种量成正比例?
(1)已知每小时加工零件数和加工时间,求加工零件总数。
(2)已知每本书的价钱和购买的本数,求应付的钱。
(3)已知每公亩产量和公亩数,求总产量。
二、引新
在上面的数量部系式中,如果加工零件总数一定,每小时加工零件和加工时间是什么关系?如果应付的总钱数一定,每本书的价钱和本数是什么关系?如果总产量一定,每公亩产量和公亩数是什么关系?这就是今天我们学习的内容:反比例的意义(板书)
三、新授
1、教学例4。
(1)出示例4。
引导学生观察上表内数据,然后回答下面的问题:
A、表中有哪两种量?这两种量相关联吗?为什么?
B、加工的时间是否随着每小时加工的个数的变化而变化?怎样变化?
C、表中两个相的数的比值是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律?
D、这个积表示什么?写出表示它们之间的数量关系式。
学生口答,师板书
小结:
2、教学例5
用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系?请你先填写下表。
每本的页数152025304060
装订的本数40
(1)先填表,然后观察上表,回答下列问题:
表中有哪两种量?
装订的本数是怎样随着每本的页数变化而变化的?
表中相对应的每两个数的乘积各是多少?
你从中发现什么规律?写出它们的数量关系式?
学生回答,教师板书如下:
每本页数装订的本数=纸的总页数(一定)
(2)小结:
从上表可以看出:每本的页数和装订的本数也是两种相关联的量,装订的本数是随着本页数的变化的。每本的页数扩大,装订的本数反而缩小;每本的页数缩小,装订的本数反而扩大。它们扩大、缩小的规律是:每本的页数和装订的本数的积总是一定的。
(3)归纳反比例的意义及关系式。
(1)请你比较一下上面的例4、例5,它们有什么共同特点?(教师引导学生归纳概括出反比例的意义)
(2)判断成反比例量的方法:根据反比例的意义判断两种量是否面反比例的量要具备的条件:
a两种相关联的'量。
b一种量变化,另一种也随着变化。
C两种量中相对应的两个数的积一定。
(3)例4中,加工的时间随着每小时加工数量的变化,每小时加工的数量和加工的时间的积(零件总数)是一定的,我们就说每小时加工的数量和加工的时间是成反比例的量。想一想:在例5中,有哪两种相关联的量?它们是不是成反比例的量?为什么?(指名几个学生口述,教师帮助纠正)
(4)概括关系式。
如果用字母X和Y表示两种相关联的量,用R表示它们的积(一定),反比例关系可以用下面的式子表示:
XY=R(一定)
3、教学例6。
播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?
师:大家能不能根据反比例的意义判断一下?
指名口述,师讲评。
(每天播种的公顷数和要用的天数是两6种相关联的量,每天播种的公顷数天数=播种的总公顷数,已知播种的总公顷数一定,也就是每天播种的公顷数和天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。)
四、小结
判断两种相关联的量是否成反比例,关键是看两种相关联的量中相对应的两个数的积是否一定,积一定这两种量成反比例。
讨论:想一想:播种总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?为什么?
五、巩固练习
课本第16页的做一做练后讲评。
六、课内外作业
完成练习三的第4――7题。
六年级数学下册《反比例》教学设计 7
教学目标
知识与技能目标:使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。
能力目标:经历反比例意义的构建过程,培养发现的能力和归纳概括的能力。
情感与态度目标:体会反比例与生活之间的联系,感悟到事物之间相互联系和相互转化的辨证唯物主义的观点。
教学重难点
重点:理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。
难点:掌握反比例的特征,能够正确判断反比例关系。
教学过程
(一)复习猜想导入,引出问题。
1、成正比例的量有什么特征?什么叫正比例关系?
2、在生活中两个相关联的量有的成正比例关系,还可能成什么关系?学生很自然想到反比例,激发学生的学习欲望,问学生想学反比例的哪些知识,学生大胆猜测,对反比例的意义展开合理的猜想。由此导入新课。
达成目标:猜想导课,激发探究愿望
(二)共同探索,总结方法。
1、明确这节课的学习目标:
(1)理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
(2)经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
2、情境导入,学习探究。
(1)我们先来看一个实验。
高度(厘米)302015105
底面积(平方厘米)1015203060
体积(立方厘米)
提问:根据列表,你从中你发现了什么?
(2)学生讨论交流。
(3)引导学生回答:表中的两个量是高度和底面积。
高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。
每两个相对应的数的.乘积都是300.
(4)计算后你又发现了什么?
每两个相对应的数的乘积都是300,乘积一定。
教师小结:我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。
教师提问:高底面积和体积,怎样用式子表示他们的关系?板书:高×底面积=水的体积(一定)
(5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?板书:x×y=k(一定)
小结:通过上面的学习,你认为判断两种相关联的量是否成反比例,关键是什么?
(6)归纳总结反比例的意义。
(7)比较归纳正反比例的异同点。
达成目标:比较思想是在小学数学教学中应用十分普遍的数学思想方法,《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,学生从知识的差别中找到同一,也可以从同一中找出差别,学生学习新知识,进行深化拓展,归纳总结。
(三)运用方法,解决问题。
1、生活中,哪些相关联的量成反比例关系,举例说一说。
2、课后做一做每天运的吨数和运货的天数成反比例关系吗?为什么?
3、出示反比例图像,与正比例图像进行比较学习。
达成目标:学生利用对反比例概念的理解,判断相关联的量是否成反比例,学会分析并进行判断。
(四)反馈巩固,分层练习。
判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
达成目标:使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。
(五)课堂总结,提升认识
总结:今天我们学习了什么?(揭示课题—反比例)你有什么收获?学习中,你要提示大家注意什么?你对今天的学习还有什么疑问吗?
六年级数学下册《反比例》教学设计 8
教学内容
教科书第14~16页的例4~例6以及相应的“做一做”,练习三的第4~7题.
教学目的
1.使学生通过具体问题认识成反比例的量,理解反比例的意义,能判断两种量是否成反比例关系,能找出生活中成反比例量的实例,并进行交流.
2.引导学生运用前面学习成正比例的量的学习方法学习反比例,从中感受学习方法的普遍适用性,培养学生的观察能力、推理能力、归纳能力和灵活运用知识的能力.
教具、学具准备
视频展示台.
教学过程
一、复习引入
1.怎样判断两种量是不是成正比例?
2.写出正比例关系式.
3.判断下面每题中的两种量是不是成正比例,并说明理由.
(1)每本练习本的张数一定,装订练习本纸的总张数和装订的本数.
(2)每天播种的公顷数一定,播种的总公顷数与播种的天数.
(3)工作总量一定,工作效率和工作时间.
4.回想一下,我们怎样学习成正比例的量.
引导学生归纳研究成正比例的量的学习步骤和方法是:先把两种量的变化情况列成表,再观察、讨论表中的变化规律,归纳变化规律,并用关系式表示.学生回答时,教师随学生的回答板书:
列表──观察──讨论──归纳──用关系式表示
二、导入新课
教师:这节课我们用同样的学习方法来研究比例的另外一个规律。
三、进行新课
1.教学例4.
教师:同学们刚才在解答准备题时,知道“工作总量一定,工作效率和工作时间”不成正比例关系,那么,工作效率和工作时间成不成比例?如果成比例,又成什么比例呢?为了弄清这些问题,我们可以用前面掌握的学习方法,先列个表来分析.
在视频展示台上出示例4:华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表:
工效(个)102030405060…
时间(时)603020151210…
教师:请同学们观察这个表,先独立思考后再讨论、交流、回答以下问题:(在视频展示台上展示.)
(1)表中有哪两种量?
(2)这两种量是怎样变化的?
(3)还可以从表中发现哪些规律?
学生讨论后,先抽问第1问和第2问.引导学生说出表中有工作效率和工作时间这两种量,这两种量的变化规律是,工作效率不断扩大,所需的工作时间反而不断地缩小.
教师:为什么会有这种变化规律呢?
引导学生结合生活实例,说因为工作总量一定,每小时做的工作越多,所用的时间越少.例如要种8棵树,如果每小时种1棵,要8小时;每小时种4棵,只要2小时;如果每小时种8棵呢,只要1小时就够了.
教师:尽管一个量在扩大,另一个量反而缩小,但是每小时加工的个数是随所需的加工时间的变化而变化的,所以,每小时加工的个数与所需的加工时间仍然是相关联的两种量.你们还发现些什么规律吗?
学生任意说表中的规律.如每小时加工数从10扩大到40个,扩大4倍,所需的加工时间反而从60小时缩短到15小时,缩小了4倍;每小时加工数从60个缩小到30个,缩小了2倍,所需的加工时间反而从10小时扩大到20小时,扩大了2倍.
教师:还能发现哪些规律呢?比如说用每竖列的两个数相乘,看看它们的乘积是否相等,想想这个乘积表示什么?
引导学生找出每竖列的两个数的乘积相等的规律.如:
10×60=600,20×30=600,40×15=600,…
这个600实际上就是这批零件的总数.
教师:能写出关系式吗?
引导学生写出:每小时加工数×加工时间=零件总数(一定)
2.教学例5.
教师:再来研究一个问题.
在视频展示台上出示例5:用600张纸装订成同样的练习本,每本的张数和装订的本数有什么关系呢?请同学们先填写下表:
每本的张数152025304060…
装订的本数40…
教师:同学们先填写好表中的数据后,再用前面的分析方法,独立分析表中的数量关系,然后同桌进行交流.
学生分析后指导学生归纳:
(1)表中每本的张数和装订的本数是相关联的两种量,装订的本数随着每本的张数的变化而变化;
(2)每本的张数扩大,装订的本数反而缩小;每本的张数缩小,装订的本数反而扩大;
(3)它们之间的关系可以写成:每本的张数×装订的本数=纸的总张数(一定).
教师:我们上面研究了两个问题,下面我们一起来归纳这两个问题的一些共同特点.
引导学生归纳出这两个问题中都有两种相关联的量,一种量扩大,另一种量反而缩小,这两种量中相对应的两个数的积一定.
教师:凡是符合以上规律的两种量,我们就把它叫做成反比例的量.(板书课题)它们之间的关系就是反比例关系.和正比例一样,成反比例的量也可以用式子来表示.如果用x和y表示两种相关联的量,用k表示它们的乘积(一定),怎样用式子来表示反比例的关系式呢?
引导学生归纳出:x×y=k(一定).
教师:请同学们相互说一说生活中还有哪些是成反比例的量?
学生先相互说,然后再说给全班同学听.
3.教学例6.
教师:请同学们用上面所学的知识判断一下,在播种中如果播种的.总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?为什么?
学生先独立分析,然后再交流讨论,最后抽学生汇报.引导学生分析出每天播种的公顷数和要用的天数是两种相关联的量,它们与总公顷数有“每天播种的公顷数×天数=总公顷数”的关系,由于总公顷数一定,所以每天播种的公顷数和要用的天数成反比例.
指导学生完成第16页“做一做”.
四、巩固练习
指导学生完成练习三第4~7题.
五、课堂小结
教师:这节课同学们学到了哪些知识?运用了哪些学习方法?还有哪些不懂的问题?
学生小结后教师再对全课知识进行归纳,学有余力的学生,可以在教师的指导下讨论完成练习三的第8*题.
板书设计
成反比例的量学习的基本步骤和方法:列表──观察──讨论──归纳──用关系式表示.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系.
X×Y=K(一定)
例4:例5:每小时加工数×加工时间=零件
每本的张数×装订的本数=纸的总数(一定)总张数(一定)
六年级数学下册《反比例》教学设计 9
教学内容
根据教科书自选内容。
教学目标
1.通过练习,使学生进一步理解并掌握反比例的意义,会正确判断两种相关联的量是否成反比例,并能解决简单的实际问题。
2.进一步培养学生分析问题、解决问题的能力。
3.结合实例,培养学生仔细分析、主动探索的良好的学习习惯。
教学重点
正确理解反比例的意义,并能作出正确的判断。
教学难点
能根据反比例的意义,解决相关的实际问题。
教学过程
一、学习准备,揭示课题
1.谈话引入
上节课我们学了什么?今天,我们进行练习(板书:反比例练习)。通过练习,达到以下两个目标:①进一步理解反比例的意义,并能正确判断两个相关联的量是否成反比例;②能根据反比例的意义,解决实际问题。
2.你知道哪些有关反比例的知识
板书:意义、字母表示:xy=k(一定)
二、基本练习
1.观察下面三个表
(1)表1中的两种量是怎样变化的?哪种量是一定的?每天烧煤量和烧的天数成什么比例?为什么?
(2)表2中的.两种量是怎样变化的?哪种量是一定的?用去的煤和剩下煤的吨数成比例吗?为什么?
(3)表3中的两种量是怎样变化的?哪种量是一定的?平行四边形的底和平行四边形的高成什么比例?为什么?
2.判断
判断下面各题中的两种量是否成比例。如果成比例,成什么比例?
(1)平行四边形的面积一定,它的底和高。
(2)一筐桃平均分给猴子,猴子的只数和每只猴子分的个数。
(3)报纸的单价一定,订阅的份数与总价。
(4)小刚跳高的高度和他的身高。
(5)C=4a
三、解决问题
1.巩固练习
一辆汽车从甲地开往乙地,每时行70km,5时到达。如果要4时到达,每时需要行驶多少千米?
(1)学生读题,理解题意。
(2)会列式解答吗?试试看。还可以怎么解?(引导学生用反比例知识解答)
2.用比例知识解答
(1)同学们做广播操,每行站20人,正好站18行。如果每行站24人,可以站多少行?
(2)用同样的砖铺地,铺18m2要用618块砖。如果铺24m2,要用多少块砖?
学生独立分析、解答,教师巡视,并加以指点。
根据这两道题组织学生讨论正比例关系和反比例关系的相同点和不同点。
讨论后全班交流,教师引导学生归纳并板书。
相同点:都有两种相关联的量,一种量变化,另一种量也随着变化。
不同点:正比例是相对应的两个数的比值(商)一定。反比例是相对应的两个数的积一定。
四、变式提高练习
按规律填数。
(1)(1,36),(2,18),(3,12),(4,),(5,)
(2)15,210,315,4(),()25
(3)81,27,(),3,1,()
五、全课小结
同学们,今天我们学习了什么?你有什么收获?还有哪些疑问?
六、拓展练习
根据自己的生活经验,各构建一道生活中用正比例和反比例解决的问题,再解决,并与同学交流你构建问题的思考方法和解决问题的方法。
六年级数学下册《反比例》教学设计 10
教学内容:
教科书第64~65页的例3和“试一试”,“练一练”和练习十三的第6~8题。
教学目标:
1.使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。
2.使学生在认识成反比例的量的.过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3.使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
教学重点:
认识反比例的意义
教学难点:
掌握成反比例量的变化规律及其特征
教学准备:多媒体
教学过程:
一、复习铺垫
1、怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?
2、判断下面两种量是否成正比例?为什么?
时间一定,行驶的路程和速度
除数一定,被除数和商
3、单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?
4、导入新课:
如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。
二、探究新知
1、出示例3的表格
学生填表
2、小组讨论:
(1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?
(2)你能找出它们变化的规律吗?
(3)猜一猜,这两种量成什么关系?
3、全班交流
学生初步概括反比例的意义(根据学生回答,板书)
4、完成“试一试”
学生独立填表
思考题中所提出的问题
组织交流,再次感知成反比例的量
5、抽象表达反比例的意义
引导学生观察例3和“试一试”,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,反比例关系可以用怎样的式子来表示?
根据学生的回答,板书:x×y=k(一定)揭示板书课题。
三、巩固应用
1、练一练
每袋糖果的粒数和装的袋数成反比例吗?为什么?
2、练习十三第6题
先算一算、想一想,再组织讨论和交流。
要求学生完整地说出判断的思考过程。
3、练习十三第7题
先独立思考作出判断,再有条理地说明判断的理由。
4、练习十三第8题
先填表,根据表中数据进行判断,明确:长方形的面积一定,长和宽成反比例;长方形的周长一定,长和宽不成反比例。
5、思考:
100÷x=y,那么x和y成什么比例?为什么?
6、同桌学生相互出题,进行判断并说明理由。
四、反思
这节课你学会了什么?你有哪些收获?还有哪些疑问?课后你能与同学相互出题进行练习吗?
学生交流
五、作业
完成《练习与测试》相关作业
板书设计:
成反比例的量
六年级数学下册《反比例》教学设计 11
教学内容:
六年级下册总复习83—85页《正比例、反比例》。
教学目标:
(一)知识目标:
(1)通过回顾与交流,鼓励学生自己独立整理知识,形成系统。
(2)通过具体问题的认识进一步认识正比例、反比例的量。
(二)数学思考与解决问题
通过复习与整理加深对正、反比例意义的理解。并运用正、反比例的知识解决一些实际问题,为以后学习函数打下基础。
(三)情感态度
培养学生认真思考的习惯,学会区分正反比例。
教学重、难点:
(1)进一步认识正、反比例的意义,并能运用正、反比例的意义解决实际问题。
(2)培养学生的问题意识,不断积累活动经验,体会重要的数学思想。
教法学法
自主复习、小组交流、全班交流、互帮互学
教学准备
表格、小黑板
教学过程
一、情境创设,导入复习
1、判断下面每题中的两种量成什么比例关系?
①速度一定,路程和时间()
②路程一定,速度和时间()
③单价一定,总价和数量()
④全校学生做操,每行站的人数和站的行数()
2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车从甲地开往乙地,每小时行90千米,要行4小时;每小时行80千米,要行X小时。
指名学生口答,老师板书。
二、回顾整理,构建网络
(一)比的知识:
1.谁来举个例子说说什么是比?什么是比例?什么是比的基本性质?(引导学生列举:“按比例分配”、“比例尺”、“图形的放大与缩小”等例)
2.说一说用比的知识可以解决哪些实际问题。
让学生体会比在解决实际问题时的应用。
3.完成教科书p83“回顾与交流”的3题
两人一组,合作完成后,全班交流结果,让学生比较后回答有什么发现。
(二)比和分数、除法的联系
出示:a∶b=()(())=()÷()(b≠0)教师问:
1.你会填写这个的等式吗?学生填好后,再问:
2.你的.根据是什么?(比和分数、除法的联系)
3.那么比和分数、除法的联系是什么?它们的区别呢?
4.b为什么不能等于0?小组议一议,再交流。
5.谁来说说比的基本性质与分数的基本性质、商不变的规律?它们有什么联系吗,谁来说说?
(1)判断:比的前项和后项都乘或都除以相同的数,比值不变。(让学生说说为什么?)
(2)填空:()(())=()÷()=()∶()(填好后展示学生不同的结果。)
(三)比例尺的知识
什么是比例尺?
(四)正比例,反比例的知识:
(1)小组合作:把有关正比例反比例的知识在小组内进行交流,整理成知识网络图。
(2)班内交流,全班分享
(3)全班同学进行优化,形成知识网络图。
变化的量---正比例(意义、图象、应用)--反比例(意义、图象、应用)---图形的放缩---比例尺
三:重点复习,强化提高:
1.一辆汽车在高速路上行驶,速度保持在100千米/时,说一说汽车行驶的路程随时间变化的情况,并用多种方式表示这两个量之间的关系。
(1)学生独立思考
(2)同桌交流
3)全班交流
a自然语言b列表c画图d关系式
2.举出生活中正、反比例的例子
3.完成课本84页巩固与应用
独立完成,班内交流。
四.自主检测,完善提高:
判断并说明理由
(1)出油率一定,香油的质量与芝麻的质量。
(2)一捆100米长的电线,用去的长度与剩下的长度。
(3)三角形的面积一定,它的底和高。
(4)一个数与它的倒数。
五、完成后班内交流,这节课你有什么收获?
板书设计
正比例和反比例
比比例、应用
分数、比、除法之间的关系
课后反思
本课时有以下特点:
1、抓住复习起点,以小组合作的形式自主讨论复习,既增强了学生的主动性和自觉性,也面向全体学生进行查漏补缺。
2、借助表格的方式来整理复习,更直观地体会比和比例、正比例和反比例的知识点和不同之处。
3、能整合所有的知识,运用多种方法解决简单的实际问题,巩固知识。
六年级数学下册《反比例》教学设计 12
教学内容:
教材第53~54页练习十第4~13题,练习十后的思考题。
教学要求:
使学生进一步掌握正、反比例关系的意义,能正确应用比例知识解答基本的正、反比例应用题,并沟通不同解法之间的联系,进一步提高学生判断、分析和推理等思维能力。
教学重点:
进一步掌握正、反比例关系的意义。
教学难点:
正确应用比例知识解答基本的正、反比例应用题。
教学过程:
一、基本训练
1.揭示课题。
我们已经学习了正、反比例关系的意义和正、反比例应用题,根据成正、反比例量的关系,可以应用比例的知识解答相应的应用题。这节课,我们练习正、反比例应用题。(板书课题)
2.基本训练。
小黑板出示练习十第4题,让学生口答并说明理由。结合第(1)题判断说明:在一个乘法表示的式子里(板书:ab=c),如果积一定,另两个量就成反比例;如果一个因数一定,根据乘、除法的关系,另两个量就成正比例。
二、基本题练习
1.做练习十第5题。
(1)学生读题。
提问:按过去的算术解法,第(1)题要先求什么数量,第(2)题要先求什么数量?用比例的知识怎样解答呢,请大家自己做一做。指名两人板演,其余学生做在练习本上。集体订正。
(2)提问:第(1)题是怎样想的?第(2)题是怎样想的,提问:正、反比例应用题解题过程有什么相同的地方?解题方法有什么不同?为什么?
2.练习小结。
解答正、反比例应用题,都要先判断两种相关联的量成什么比例,找出两种相关联量的对应数值,再列等式解答。解题时,正比例应用题要根据比值一定列等式解答;反比例应用题要根据乘积一定列等式解答。
三、综合练习
1.做练习十第11题。
让学生默读题目。提问:第一个圆柱的高是第二个圆柱高的还可以怎样说?(第一个圆柱的高和第二个圆柱高的比是4:5,或者第一个圆柱的高看做4份,第二个圆柱的高就是这样的5份)请大家思考两个问题,当两个圆柱底面积相等时,(1)圆柱体积与高成什么比例?(2)两个圆柱体积的'比与对应高的比有怎样的关系?为什么?想一想,你能用几种方法解答,自己在练习本上列出式子.指名学生口答式子,老师板书(包括用分数应用题的方法解答)。让学生根据不同的式子,说说各是怎样想的。说明:按照分数与比之间的联系,有些应用题可以根据数量之间的联系,用分数和比例知识,采用不同的方法解答。
2.做练习十第13题。
(1)提问:这是一道什么应用题?可以怎样列式解答?(老师板书)这样解答是怎样想的?(把树苗总棵数看做单位1,单位1的94%是470棵,所以列方程解)
(2)把树苗总数看做单位l,成活棵数是94%,你还能用比例知识解答吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说明列式理由。
四、讲解思考题
学生默读题目。提问:增加铅以后,铅与锡的比是5:3,有怎样的关系式?根据这样的关系式可以怎样解答呢?请大家课后想一想、做一做。
五、课堂小结
通过练习,你进一步明确了哪些内容?指出:过去我们学过的先求单一量和先求总数量的应用题,可以用比例知识来解答。解答正、反比例应用题,要先判断成什么比例,找出数量之间对应数值,然后根据比值相等或乘积相等的等量关系,列等式解答。解答应用题,还可以根据数量之间的联系,用不同的方法做。
六、布置作业
课堂作业:练习十第8、9、10题
家庭作业:练习十第6、7、12题。
六年级数学下册《反比例》教学设计 13
教学目标
1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.
2.通过观察、比较、归纳,提高学生综合概括推理的能力.
3.渗透辩证唯物主义的观点,进行运用变化观点的启蒙教育.
教学重难点
理解正反比例的意义,掌握正反比例的变化的规律.
教学过程
一、导入新课
(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?
(二)教师提问
1.你为什么马上能想到还剩多少呢?
2.是不是因为吃了的和剩下的是两种相关联的量?
教师板书:两种相关联的量
(三)教师谈话
在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和
数量也是两种相关联的量.你还能举出一些例子吗?
二、新授教学
(一)成正比例的.量
例1.一列火车行驶的时间和所行的路程如下表:
时间(时):路程(千米)
1:90
2:180
3:270
4:360
5:450
6:540
7:630
8:720
1.写出路程和时间的比并计算比值.
(1)2表示什么?180呢?比值呢?
(2)这个比值表示什么意义?
(3)360比5可以吗?为什么?
2.思考
(1)180千米对应的时间是多少?4小时对应的路程又是多少?
(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?
教师板书:时间、路程、速度
(3)速度是怎样得到的?
教师板书:
(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?
(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.
3.小结:有什么规律?
【六年级数学下册《反比例》教学设计】相关文章:
《反比例函数》教学设计10-27
数学下册分数的意义教学设计(通用6篇)07-31
六年级数学反比例教学反思(通用12篇)03-29
数学下册教学总结12-30
数学六年级教学设计03-03
数学教学设计08-17
用反比例解决问题教学设计(精选5篇)07-23
关于反比例函数的图象和性质教学设计10-21
六年级下册的数学教学计划04-05