教学设计

五年级数学上册《方程》教学设计

时间:2023-07-21 11:55:49 诗琳 教学设计 我要投稿
  • 相关推荐

五年级数学上册《方程》教学设计(通用11篇)

  作为一名专为他人授业解惑的人民教师,时常需要用到教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么教学设计应该怎么写才合适呢?下面是小编为大家整理的五年级数学上册《方程》教学设计,欢迎阅读与收藏。

五年级数学上册《方程》教学设计(通用11篇)

  五年级数学上册《方程》教学设计 1

  教学目标

  知识与技能目标

  1、构建本章的部分知识框图。

  2、复习一元二次方程的概念、解法。

  过程与方法

  1、通过对本章方程解法的复习,进一步提高学生的运算能力。

  2、在解一元二次方程的过程中体会转化等数学思想。

  情感、态度与价值观

  通过师生共同的活动,使学生在交流和反思的过程中建立本章的知识体系,从而体验学习数学的成就感、

  教学重点

  1、一元二次方程的概念

  2、一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法;

  教学难点

  解法的灵活选择;例4和例5的'解法。

  教学过程

  一、创设情境

  导入新课

  问题:本章中,我们有哪些收获?(教师点拨引导学生构建本章部分知识框图)

  二、师生互动

  共同探究

  1、复习概念

  例1

  例2

  2、四种解法

  (1)

  解法及其关系

  (2)

  根的形式

  x1=3

  x2=4

  (3)熟悉解法

  例3用四种解法分别解此方程

  (4)方法优选

  3、方法补充

  例4

  4、解法纠错

  例5

  解关于x的方程

  错误解法

  正确解法

  三、小结反思

  提炼思想

  我们有哪些收获?解方程的思想方法是什么?

  四、布置作业

  巩固提高

  五年级数学上册《方程》教学设计 2

  一、教学目标

  【知识与技能】

  进一步掌握直线方程的各种形式,会根据条件求直线的方程。

  【过程与方法】

  在分析问题、动手解题的过程中,提升逻辑思维、计算能力以及分析问题、解决问题的能力。

  【情感、态度与价值观】

  在学习活动中获得成功的体验,增强学习数学的`兴趣与信心。

  二、教学重难点

  【重点】根据条件求直线的方程。

  【难点】根据条件求直线的方程。

  三、教学过程

  (一)课堂导入

  直接点明最近学习了直线方程的多种形式,这节课将练习求直线的方程。

  (二)回顾旧知

  带领学生复习回顾直线斜率的求法,以及直线方程的点斜式、两点式和一般式。

  为了加深学生的运用和理解,继续引导学生思考,是否有其他解题思路。预设大部分学生能够想到用点斜式进行计算。教师肯定学生想法并组织学生动手计算,之后请学生上黑板板演。

  预设学生有多种解题方法,如AB、AC所在直线方程用两点式求解,BC所在直线方程用点斜式求解。

  学生板演后教师讲解,点明不足,提示学生,计算结束后要记得将所求得方程整理为直线方程的一般式。

  师生总结解题思路:求直线所在方程时,若给出两点坐标,在符合条件的情况下,可直接套用公式,也可利用点斜式进行求解,注意一题多解的情况。

  (四)小结作业

  小结:学生畅谈收获。

  作业:完成课后相应练习题,根据已知条件求直线的方程。

  五年级数学上册《方程》教学设计 3

  教学目标:

  利用代数与几何图形相结合的思想列方程解应用题;并创设情景解决生活中的数学问题。

  重点难点:

  知识的综合灵活应用

  情感目标:

  激发学生创新思维,培养学生解决问题的能力。

  教学过程:

  (一) 复习:

  列方程解应用题的解题步骤。

  (二) 正课:

  本节课我们将研究一下如何用列方程的思想方法解决与几何知识有关的应用题。

  例1:在宽为20米长为30米的矩形地面上,修筑同样的两条互相垂直的道路,余下部分作耕地,使耕地面积为375平方米,问道路宽为多少米?

  分析:如图1余下部分的面积375M2是等量关系。但被分为四块求面积有困难。

  不妨把道路向两边移,这样余下部分为一个矩形,求面积就比较容易。

  解:略。

  练习:《考纲》

  例2:有一块矩形耕地,相邻两边的长度如图所示,要在这块地上分别挖如图的4条横向水渠和2条纵向水渠,且使水渠的.宽相等,余下的可耕地面积为9600平方米。那么水渠应挖多宽?

  例3:在矩形ABCD中,放入8个形状大小相同的小长方形,求阴影部分面积。

  练习:《考纲》P85

  思考:在一个50米长30米宽的矩形空地上要设计改造成为花坛,并要使花坛所要的面积为荒地面积的一半,诗给出你的设计方案。

  小结:我们常用列方程的思想来处理几何图形的计算问题,这种解法也是数形结合思想方法的一种应用。

  五年级数学上册《方程》教学设计 4

  教学内容:

  教科书第13~14页,“练习与应用”第5~7题,“探索与实践”第8~9题及“与反思”。

  教学目标:

  1、通过练习与应用,使学生进一步掌握列方程解决实际问题的方法与步骤,提高列方程解决实际问题的意识和能力。

  2、通过小组合作,进一步培养学生探索的意识,发展思维能力。

  3、通过与反思,使学生养成良好的.学习习惯,获得成功体验,增强学好数学的信心。

  教学过程:

  一、练习与应用

  1、谈话引入这节课我们继续对列方程解决实际问题进行练习。板书课题。

  2、指导练习。独立完成5~7题。展示交流。集体评讲。你是根据什么等量关系列出方程的?在解方程时要注意什么?(步骤、格式、检验)

  二、探索与实践

  1、完成第8题。理解题意,完成填写。小组中交流第一个问题。汇报自己发现。把得到的和分别除以3,看看可以发现什么?可以得出什么结论?独立解答第二个问题。你是怎么解答第二个问题的?指导解答第三个问题。试着连续写出5个奇数,看看有什么发现?怎样求n的值呢?5个连续偶数的和有这样的规律吗?试试看。

  2、完成第9题。小组中讨论方法,巡视指导。可以先把左边的两边都去掉两个苹果。1个梨=3个苹果再根据右边图:3个苹果=6个猕猴桃=1个梨

  三、与反思

  在小组中说说自己对每次指标的理解。自我反思与。说说自己的优点与不足。

  四、阅读“你知道吗”可以再查找资料,详细了解。

  五、课堂这节课我们复习了哪些内容?你有了哪些收获?

  五年级数学上册《方程》教学设计 5

  教学目标

  (一)教学知识点

  1.能够利用二次函数的图象求一元二次方程的近似根.

  2.进一步发展估算能力.

  (二)能力训练要求

  1.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验.

  2.利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想.

  (三)情感与价值观要求

  通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的.关系,提高估算能力.

  教学重点

  1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

  2.能够利用二次函数的图象求一元二次方程的近似根.

  教学难点

  利用二次函数的图象求一元二次方程的近似根.

  教学方法

  学生合作交流学习法.

  教具准备

  投影片三张

  第一张:(记作2.8.2A)

  第二张:(记作2.8.2B)

  第三张:(记作2.8.2C)

  教学过程

  创设问题情境,引入新课

  [师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可.但是在图象上我们很难准确地求出方程的解,所以要进行估算.本节课我们将学习利用二次函数的图象估计一元二次方程的根.

  五年级数学上册《方程》教学设计 6

  教学内容:

  教科书第12~13页,“回顾与整理”、“练习与应用”第1~4题。

  教学目标:

  1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。

  2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。

  教学过程:

  一、回顾与整理

  1、谈话引入。本单元我们学习了哪些内容?你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?在小组中互相说说。

  2、组织讨论。

  (1)出示讨论题。

  (2)小组交流,巡视指导。

  (3)汇报交流。

  你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?

  3、小结。同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。

  二、练习与应用

  1、完成第1题。

  (1)独立完成计算。

  (2)汇报与展示,说说错误的`原因及改正的方法。

  2、完成第2题。

  (1)学生独立完成。

  (2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)

  3、完成第3题。

  (1)列出方程,不解答。

  (2)你是怎样列的?怎么想的?大家同意吗?

  (3)完成计算。

  4、完成第4题。单价、数量、总价之间有怎样的数量关系?指出:抓住基本关系列方程,y也可以表示未知数。

  三、课堂总结

  通过回顾与整理,大家共同复习了有关方程的知识,你还有什么疑问吗?

  五年级数学上册《方程》教学设计 7

  教学目标

  (一)知识认知要求

  1、认识一元一次方程与一次函数问题的转化关系;

  2、学会用图象法求解方程;

  3、进一步理解数形结合思想;

  (二)能力训练要求

  1、通过一元一次方程与一次函数的图象之间的结合,培养学生的数形结合意识;

  2、训练大家能利用数学知识去解决实际问题的能力。

  (三)情感与价值观要求

  体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的.作用。

  教学重点与难点

  1、理解一元一次不方程与一次函数的转化及本质联系。

  2、掌握用图象求解方程的方法。

  教学过程

  一、提出问题

  (1)方程2x+20=0;(2)函数y=2x+20

  观察思考:二者之间有什么联系?

  从数上看:方程2x+20=0的解,是函数y=2x+20的值为0时,对应自变量x的值

  从形上看:函数y=2x+20与x轴交点的横坐标即为方程2x+20=0的解

  根据上述问题,教师启发学生思考:

  根据学生回答,教师总结:

  由于任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某一个函数的值为0时,求相应的自变量的值。从图象上看,这相当于已知直线y=ax+b,确定它也x轴交点的横坐标的值。

  二、典型例题:

  例1、(书中例1)一个物体现在的速度是5米/秒,其速度每秒增加2米/秒,再过几秒它的速度为17米/秒?

  五年级数学上册《方程》教学设计 8

  教学目标:

  1.使学生进一步掌握解一元一次方程的移项规律。

  2.掌握带有括号的一元一次方程的.解法;

  3.培养学生观察、分析、转化的能力,同时提高他们的运算能力.

  教学重点:

  带有括号的一元一次方程的解法.

  教学难点:

  解一元一次方程的移项规律.

  教学手段:

  引导——活动——讨论

  教学方法:

  启发式教学

  教学过程

  (一)、情境创设:

  知识复习

  (二)引导探究:带括号的方程的解法。

  例1.2(x-2)-3(4x-1)=9(1-x).

  解:(怎样才能将所给方程转化为例1所示方程的形式呢?请学生回答)

  去括号,得:

  移项,得:

  合并同类项,得:

  系数化1,得:

  遇有带括号的一元一次方程的解法步骤:

  (三)练习:(A)组

  1.下列方程的解法对不对?若不对怎样改正?

  解方程2(x+3)-5(1-x)=3(x-1)

  解:2x+3-5-5x=3x-1,

  2x-5x-3x=3+5-3,

  -6x=-1,

  2.解方程:

  (1)10y+7=12-5-3y;(2)2.4x-9.8=1.4x-9.

  3.解方程:

  (1)3(y+4)12;(2)2-(1-z)=-2;

  (B)组

  (1)2(3y-4)+7(4-y)=4y;(2)4x-3(20-x)=6x-7(9-x);

  (3)3(2y+1)=2(1+y)+3(y+3)(4)8x+4=2(4x+3)-2(-3+x)

  (四)教学小结

  本节课都教学哪些内容?

  哪些思想方法?

  应注意什么?

  五年级数学上册《方程》教学设计 9

  【教学目标】

  知识与技能

  理解合并同类项的法则,会用合并同类项法则解一元一次方程,并在此基础上探索一元一次方程的一般解法.

  过程与方法

  通过探索合并同类项法则的过程培养学生观察、思考、归纳的能力,积累数学探究活动的经验.

  情感、态度与价值观

  通过探索合并同类项法则并进一步探索一元一次方程一般解法的.过程,感受数学活动的创造性,激发学生学习数学的兴趣.

  【教学重难点】

  重点:合并同类项法则的探索及应用.

  难点:合并同类项法则的理解和灵活运用.

  【教学过程】

  一、温故知新

  师:你们知道等式的基本性质是什么吗?

  学生回答,教师点评.

  师:利用等式的基本性质解方程:

  (1)2x+3=x+4;(2)5x+4=5-3x.

  学生解答,然后集体订正.

  问题展示:

  问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?

  师:设前年购买计算机x台,那么去年购买计算机多少台?

  生:2x台.

  师:今年购买计算机多少台?

  生:4x台.

  师:题目中的等量关系是什么?

  师生共同分析,列出方程:x+2x+4x=140.

  用框图表示出解这个方程的具体过程:

  x+2x+4x=140

  合并同类项

  7x=140

  系数化为1

  x=20

  二、例题讲解

  解下列方程:

  (1)2x-x=6-8;

  (2)7x-2.5x+3x-1.5x=-15×4-6×3.

  解:(1)合并同类项,得-x=-2,

  系数化为1,得x=4.

  (2)合并同类项,得6x=-78,

  系数化为1,得x=-13.

  三、巩固练习

  解下列方程:

  1.3x+4x-2x=18-7.

  2.y-y+y=×6-1.

  四、课堂小结

  师:这节课你学习了哪些知识?获得了哪些经验?

  学生发言,教师予以补充.

  五年级数学上册《方程》教学设计 10

  教学目标

  1、会列出二元一次方程组解简单应用题,并能检验结果的合理性。

  2、知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型

  3、引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。

  教学重点

  1、列二元一次方程组解简单问题。

  2、彻底理解题意

  教学难点

  找等量关系列二元一次方程组。

  教学过程

  一、情境引入。

  小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能猜出来吗?

  二、建立模型。

  1、怎样设未知数?

  2、找本题等量关系?从哪句话中找到的'?

  3、列方程组。

  4、解方程组。

  5、检验写答案。

  思考:怎样用一元一次方程求解?

  比较用一元一次方程求解,用二元一次方程组求解谁更容易?

  三、练习。

  1、根据问题建立二元一次方程组。

  (1)甲、乙两数和是40差是6,求这两数。

  (2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。

  (3)已知关于求x、y的方程,

  是二元一次方程。求a、b的值。

  2、P38练习第1题。

  四、小结。

  小组讨论:列二元一次方程组解应用题有哪些基本步骤?

  五、作业。

  P42。习题2.3A组第1题。

  后记:

  2.3二元一次方程组的应用(2)

  五年级数学上册《方程》教学设计 11

  【教学目标】

  知识:在理解化学方程式的基础上,使学生掌握有关的反应物、生成物的计算。

  能力:掌握解题格式和解题方法,培养学生解题能力。

  思想教育:从定量的角度理解化学反应。

  了解根据化学方程式的计算在工、农业生产和科学实验中的意义。

  学会科学地利用能源。

  【教学重点】

  由一种反应物(或生成物)的质量求生成物(或反应物)的质量。

  【教学方法】

  教学演练法

  【教学过程】

  [问题引入]我们知道,化学方程式可以表示化学反应前、后物质的变化和质量关系。那么,在工、农业生产中如何通过质量关系来计算产品或原料的质量,充分利用、节约原料呢?

  下面我们学习根据化学议程式的计算,即从量的方面来研究物质变化的一种方法。

  根据提出的总是进行思考,产生求知欲。

  问题导思,产生学习兴趣。

  [投影]例一:写出碳在氧气中完全燃烧生成二氧化碳的化学方程式 ,试写出各物质之间的质量比 ,每 份质量的碳与 份质量的氧气完全反应可生成 克二氧化碳。6克碳与足量的氧气反应,可生成 ()克二氧化碳。6克碳与足量的氧气反应,可生成 克二氧化碳。

  运用已学过的知识,试着完成例一的各个填空。

  指导学生自己学习或模仿着学习。

  [投影]课堂练习(练习见附1)指导学生做练习一。

  完成练习一

  及时巩固

  [过渡]根据化学方程式,我们可以通过式量找到各物质之间的质量比。根据各物质之间质量的正比例关系,我人可以由已知质量计算出求知质量,这个过程称为根据化学议程式的`计算。

  领悟

  让学生在练习中学习新知识,使学生体会成功的愉悦。

  [讲解]例二;6克碳在足量的氧气中完全燃烧,可生成多少克二氧化碳?讲述根据化学议程式计算的步骤和格式。

  [解](1)设未知量

  (2)写出题目中涉及到的化学议程式

  (3)列出有关物质的式量和已经量未知量

  (4)列比例式,求解

  (5)答

  随着教师的讲述,自己动手,边体会边写出计算全过程。

  设6克碳在氧气中完全燃烧后生成二氧化碳的质量为X

  答:6克碳在足量的氧气中完全燃烧可生成22克CO2。

  培养学生严格认真的科学态度和书写完整、规范的良好学习习惯。

【五年级数学上册《方程》教学设计】相关文章:

数学五年级上册解方程教案04-04

数学上册教学设计11-28

《认识方程》教学设计07-02

方程的意义教学设计04-19

五年级上册数学教学设计05-27

五年级上册数学《精打细算》教学设计01-25

《解方程》教学设计(精选6篇)06-15

五年级上册数学《简易方程》练习题04-02

小学数学五年级上册教学设计(通用6篇)05-28

五年级上册数学《精打细算》教学设计优秀05-06