教学设计

《比例的应用》教学设计

时间:2024-03-14 11:00:21 王娟 教学设计 我要投稿

《比例的应用》教学设计(精选12篇)

  作为一名优秀的教育工作者,就难以避免地要准备教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。那么写教学设计需要注意哪些问题呢?下面是小编精心整理的《比例的应用》教学设计,希望能够帮助到大家。

《比例的应用》教学设计(精选12篇)

  《比例的应用》教学设计 1

  教具:

  多媒体课件

  教时:

  一课时

  教学过程

  一、导入新课

  1、下面每题中的两种量成什么比例关系?

  速度一定,路程和时间。

  总价一定,每件物品的价格和所买的数量。

  小朋友的年龄与身高。

  正方体每一个面的面积和正方体的表面积。

  被减数一定,减数和差。

  2、导入课题:

  同学们我们学习了正反比例的意义,还学过解比例,今天我们就应用这些知识解决一些实际问题。板书:比例的应用

  二、新授。

  1、教学例1。

  出示例1:

  一辆汽车2小时行驶140千米,照这样的速度,从甲地开往乙地共行驶5小时,甲乙两地之间的公路长多少千米?

  教师:先独立思考,再小组讨论交流,看能想出哪些方法解决这个问题。

  2、全班交流解答方法:

  生1:先算出每小时汽车行驶的千米数,再算5小时汽车行驶的千米数。列成算式是:14025。

  生2:先算出5小时是2小时的多少倍,再把140千米扩大相同的倍数。列式是:140(52)

  如果学生想出用比例解的方法,教师可以直接问学生:你为什么要这样解?让学生说出解题的理由后再归纳其方法;如果学生没想到用比例解,教师可作如下引导。

  教师:除了以上的解题方法以外,我们还可以研究一种新的方法来解决这个问题。请同学们用学过的比例知识思考,题中有用种量?是哪几种量?这几种量间有什么样的比例关系?题中的.照这样的速度是什么意思?

  随学生的回答,教师作如下的板书:因为速度一定,所以路和程和时间成正比例。

  解:设甲乙两地之间的公路长X千米。

  140:2=X:5(依据:速度一定)

  注意:

  ①灵活选择解法。

  ②比例解时要正确判断成什么比例。

  ③解完后注意检验。

  3、想一想:如果把第三个条件和问题改成:已知公路长350千米,需要行驶多少小时?该怎样解答?

  4、教学例2:跟例1相似的方法进行教学,放手让学生去尝试,重在培养学生独立解题的能力。

  5、比较例1和例2的相同点与不同点。

  6、如果把例2改为:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果每小时行87.5千米需要多少小时?

  三、巩固练习

  1、做一做:

  ⑴食堂买3桶油用780元,照这样计算,买8桶油要用多少钱?(用比例知识解答)

  ⑵大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?

  2、对比练习:

  ①用同样的方砖铺地,铺张18平方米要用618块砖。如果铺24平方米,要用多少块砖?

  ②一间房子要用方砖铺地。用面积是9平方米的方砖,需要96块。如果必用面积是4平方米的方砖,需要多少块?

  四、布置作业。

  练习五第1~4题。

  板书设计

  比例的应用

  例1例2

  解:设甲乙两地之间的公路长x千米。

  解:设每小时需要行驶x千米。

  140:2=x:54x=705

  2x=1405x=7054

  x=350x=87.5

  答:甲乙两地之间的公路长350千米。答:每小时需行驶87.5千米

  《比例的应用》教学设计 2

  教学目标:

  1、结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。

  2、培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。

  3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。

  教学重点:

  进一步掌握按比例分配应用题的结构特点和解题思路。

  教学难点:

  正确分析解答比例分配应用题。

  教学过程:

  一、复习。

  1、我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。

  2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,__________?(补充问题并解答)

  二、新授。

  1、教学例2。

  (1)出示例2:

  (2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的'体积按1:4进行分配。)

  (3)问:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)

  (4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)

  ①稀释液平均分成的份数:1+4=5

  浓缩液的体积:500×=100(ml)

  水的体积:500×=400(ml)

  答:稀释液100ml,水400ml。

  (5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4

  (6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)

  2、补充练习

  (1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

  (2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)

  (3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)

  (4)怎样分别算出各班应种的棵数?引导学生解答:

  ①三个班的总人数:47+45+48=140(人)

  ②一班应栽的棵数:280×=94(人)

  ③二班应栽的棵数:280×=90(人)

  ④三班应栽的棵数:280×=96(人)

  答:一班栽树94棵,二班栽树90棵,三班栽树96棵。

  (5)学生进行检验。

  (6)学生试做“做一做”中的第2题。

  三、巩固练习。

  练习十二的第1、3题。

  四、布置作业。

  练习十二第2、4、5、6、7题。

  教学反思:

  本节课的内容相对而言较容易掌握,因而学生在学习中并没有出现什么困难。教学中,我两种方法并重,并让学生理解两种方法的殊途同归之处。对于类型稍有不同的题目,如“做一做”第2题,以人数为比例进行分配的,我在教学时添加了一道例题,教学后再让学生独力完成第2题,这样的教学让学生学得较为轻松,也对这种类型题掌握得较扎实。

  《比例的应用》教学设计 3

  教学内容

  教科书第59页例2及练习十三4~6题。

  教学目标

  1.能运用反比例知识解决简单的实际问题,培养学生的数学应用意识和解决问题的能力。

  2.经历探索反比例应用的学习过程,体会反比例知识与生活的联系。

  3.使学生感受事物的普遍联系,受到辩证唯物主义观点的启蒙教育。

  教学重点

  根据反比例的意义解决有关反比例的实际问题。

  教学难点

  理解反比例应用题的解题思路。

  教学准备

  教师先准备好复习题和增加的练习题。

  教学过程

  一、激趣引入,复习铺垫

  1.运一堆煤

  车的载重量(t)

  辆数(辆)

  根据表格中的内容,你能写出多少个等量关系式?

  2.判断

  (1)当速度一定,路程和时间成什么比例?为什么?

  (2)当时间一定,路程和速度成什么比例?为什么?

  (3)当路程一定,速度和时间成什么比例?为什么?

  教师:运用反比例和以前学过的知识,我们可以解决生活中的一些问题。

  板书课题:反比例的应用

  二、合作学习,探索方法

  1.教学例2

  引导学生理解题意,找出题中的两种量。

  反馈:速度和时间是两种相关联的量。

  教师:看到这两种量,你还联想到了哪种量?(路程)

  教师:上题中路程是一定的量吗?

  着重引导学生明白:"青年突击队"参加泥石流抢险,从出发到目的地的路程是一定的。

  教师:路程一定,速度和时间成什么关系?为什么?

  反馈:速度和时间是两种相关联的量,速度扩大或缩小几倍,时间反而缩小或扩大相同的倍数,它们的积(路程)一定,所以速度和时间成反比例。

  2.解答例2

  (1)接着出示例2后面的内容:"出发时接到紧急通知要求3时之内必须到达,他们每时至少需行多少千米?"

  让学生说出,现在增加的这个条件和问题应该对应在表的哪个位置?突出让学生找准对应关系。

  (2)合作学习:要求学生独立思考后,再试着用多种方法解答这个问题,然后在小组内交流。

  交流要求:把思路和解答方法说给自己小组的成员听,把同组同学认为正确的.解答方法,请组长板书在黑板上。如果有其他组长已经写在黑板上了,另一组长就不再板书同样的解决方法。如果你用的解答方法,同组的同学不能准确判断对错,或者引起了争议的解答方法,可以自己上来把它板书在黑板上。

  学生活动,教师巡视指导。(把黑板分成3大块,供学生板书解答方法)

  (3)集体交流,结合黑板上的板书,师生共同理解解法:

  预设方法1:6×4÷3=8(km)

  抽生说出,算式6×4表示什么意思?

  预设方法2:解:设他们每时至少行xkm。

  3x=6×4

  x=24÷3

  x=8

  教师:这样列式的根据是什么?

  反馈:根据速度和时间成反比例,它们的路程相等,列出等量关系。

  预设方法3:解:设他们每时至少行xkm。

  6∶x=3∶4或x∶6=4∶3

  这种列式的方法有时会在学生中出现,应该由写这种解答方法的同学来说说他的想法。在这里主要还得根据课堂上学生出现的各种解法来引导他们理解解题思路。

  三、巩固应用,促进发展

  1.基本练习

  (1)将例2的最后一句话改编成2道应用题。

  如果要想2时到达,他们平均每时需行多少千米?

  如果每时行8km,要几时才能到达目的地?

  (2)练习十三第4题,先独立完成,再集体订正。

  2.对比练习

  (1)完成练习十三5题和6题。

  教师引导提示:题中有哪两种相关联的量?哪种量是一定的?根据一定的量找出它们的等量关系,再解答。

  (2)补充练习:修一条路,原计划每天修400m,25天完成。实际前4天修m,照这样的速度,修完要用多少天?(沟通区别与联系)

  小组讨论后反馈:

  ①每天的米数--天数②总米数--天数

  反比例知识解答:÷4×x=400×25

  正比例知识解答:∶4=(400×25)∶x

  提问:为什么一道题既能用正比例解答又能用反比例解答呢?

  引导学生明白:因为题中既有速度(照这样的速度)一定,也有总米数(一条路长度)一定。

  在解答时,一定要认真审题,具体问题具体分析。

  说一说生活中还有哪些问题可以用反比例来解答。

  四、今天这节课你有什么收获?说听听。

  《比例的应用》教学设计 4

  教学内容:

  教科书第6~8页的例4~例6,练习二的第1题。

  教学目的:

  使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。

  教学重点:

  理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。

  教学难点:

  设未知数时长度单位的使用。

  教具准备:

  教师准备一些比例尺不同的地图或本校、本地的平面图。

  教学过程:

  一、复习

  1.复习提问:长度单位:千米、米、分米、厘米、毫米之间的进率及化聚方法。

  1米=()分米=()厘米=()毫米

  1千米=()米=()厘米

  2.什么叫做比?

  3.化简下面各比。12:810厘米:100厘米

  2米:140厘米3米:15千米16厘米:90千米

  二、新课

  教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。

  1.教学比例尺的意义。

  (1)教学例4。

  设计一座厂房,在平面图上用10厘米的距离表示地上10米的距离。求图上距离和实际距离的比。

  让学生读题。指名回答:

  “这道题告诉我们什么?”(在平面图上用10厘米的距离表示地面上10米的距离。)

  “要我们做什么?”(求图上距离和实际距离的比。)板书:图上距离:实际距离

  “图上距离知道吗?实际距离也知道吗?各是多少?”继续板书如下:

  图上距离:实际距离

  10厘米:10米

  “10厘米和10米的单位相同吗?能直接化简吗?”

  教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。

  “是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作厘米后实际距离仍是整数,计算起来比较方便,所以要把米化作厘米。)

  “10米等于多少厘米?”学生回答后,教师把10米改写成1000厘米。

  “现在单位统一了,是多少比多少,怎样化简?”教师边说边擦掉10和1000后面的单位“厘米”,并加上“:”,板书成如下形式:

  图上距离:实际距离

  10:1000

  请一名同学到黑板前化简这个比,别的同学在练习本上做。集体订正后,教师写出这道题的“答:…”。

  然后说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们就给它起一个名字叫做“比例尺”。(板书:图上距离:实际距离=比例尺)有时图上距离和实际距离的比也可似写成分数形式。(板书:或

  图上距离=比例尺

  实际距离

  图上距离是比的前项,实际距离是比的后项。为了计算简便,通常把比例尺写成前项是1的最简单整数比。

  教师出示比例尺不同的地图和本地、本校的平面图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。

  最后教师指出:

  ①比例尺与一般的尺不同,这是一个比,不应带计量单位。

  ②求比例尺时,前、后项的长度单位一定要化成同级单位。如1O厘米:1O米,要把后项的米化成厘米后再算出比例尺。

  ③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。比如,例4中的比例尺通常写成:1:100=

  (2)巩固练习。

  让学生完成第6页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“l”。

  2.教学根据比例尺求图上距离或实际距离。

  教师:知道了一幅图的比例尺,我们可以根据图上距离求出实际距离,或者根据实际距离求出图上距离。

  (1)教学例5。

  在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米。南京到北京的实际距离大约是多少千米?

  指名读题,并说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了南京到北京的图上距离,求南京到北京的实际距离。)

  教师启发:因为图上距离:实际距离=比例尺,要求实际距离可以用解比例的方法来求。

  “这道题的图上距离是多少?”板书:15

  “实际距离不知道,怎么办?”(用x表示。)在15的下面板书出x,并在它们中间画上分数线。

  “因为图上距离和实际距离的单位要相同,所设的x应用什么单位?”(应用厘米。)板书:解:设南京到北京的实际距离为x厘米。

  “比例尺是多少?写成什么形式?”(写成分数形式。)最后板书成下面的形式:

  15=1

  x6000000

  指定一名学生到前面求X的值,其他学生在练习本上做。订正后,回答:

  “现在求出的实际距离是多少厘米,题目要求的实际距离是多少千米。应该怎么办?”板书:90000000厘米=900千米,并写出这道题的答。

  之后,再回忆一下解答过程。

  (2)巩固练习。

  做第7页上的“做一做”。先让学生说出图中的比例尺是多少,表示什么意思,再用直尺量出图中河西村与汽车站间的距离,然后计算出实际距离。集体订正时,要注意检查学生是否把实际距离化成了千米。

  (3)教学例6。

  出示例6:一个长方形操场,长110米,宽90米,把它画在比例尺是的'图纸上,长和宽各应画多少厘米?

  指名读题并说出题目告诉了什么,求什么。(告诉了操场的长和宽的实际距离和比例尺,求长和宽的图上距离。)

  教师:我们先来求长的图上距离。长的图上距离不知道,应设为x。(板书:解:设长应画x厘米。)长的实际距离是多少?它和图上距离的单位相同吗?怎么办?比例尺是多少?

  然后让学生求x的值,并说出求解过程,教师板书出来。

  “这道题做完了吗?还要求宽的图上距离。宽的图上距离不知道,应用什么未知数来表示呢?因为前面求长的图上距离时,已经用了x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。我们就用y来表示、”板书:设宽应画y厘米。让学生把这道题做完。最后教师写出这道题的答。

  三、练习

  1、比例尺=()实际距离=()图上距离=()

  2.2.5米=()厘米0.00006千米=()厘米0.032米=()厘米350000厘米=()千米3.5千米=()厘米

  独立完成练习二第1题,并订正。

  完成练习二的第2题、3题。

  第3题,让学生先想想比例尺子表示的意思。1厘米的图上距离相当于100厘米的实际距离。)然后再量出图中所示的宽和高,并计算出实际的宽和高各是多少。集体订正时,要让学生说说计算出的实际的宽和高的单位是什么。

  《比例的应用》教学设计 5

  【教学内容】

  义务教育课程标准实验教科书《数学》(人教版六年级下册)教材P59―60内容。

  【教学目标】

  1.理解用比例解决问题的一般方法和技巧,学会用比例解决一般问题。

  2.通过与前面旧知识的解决问题的方法对比,理解应用比例解决问题的优势和好处,培养学生一题多解的解决问题的能力。

  3.发展学生的应用意识和实践能力。

  【教学重点】

  运用正反比例解决实际问题。

  【教学难点】

  正确判断两种量成什么比例。

  【教材分析】

  解比例应用题是在学生理解了正、反比例的意义并学会解比例的基础上进行教学的,主要包括正、反比例的应用题,这是比和比例知识的综合运用.教材通过两个例题讲解正、反比例应用题的解法,通过讲解使学生掌握正反比例应用题的特点以及解题的步骤。用正、反比例解应用题首先要根据题意分析数量关系,能从题目中找出两种相关联的量,这两种量中相对应的两个数的比值(或者积)是否一定,从而判断这两种量中是否成正(或者反)比例,然后设未知数

  列比例解答.判断的过程是正、反比例意义实际应用的过程,所以是比例应用题的难点,要予以高度重视.同时还要引导学生对“比例分配与正比例应用题”“正比例应用题与反比例应用题”这两组概念加以区别,从多角度、多方位提高学生对比例概念的理解和运用能力.

  【学情分析】

  解比例应用题是在学生已经掌握了“比例的基本知识”、同时在四五年级学习了简单的“归一应用题”的基础上进行教学的。所以本节课可以重点体现“学生是数学学习的主人”,“以学生为中心”,“一切为了学生的发展”的教学理念。学生对用比例解决问题已经有了一定的知识沉淀,所以在设计本节课时,老师力求让学生积极参与教学过程,通过让学生独立思考、小组讨论、自我展示、一题多解等多种形式的教学,完成“要我学”为“我要学”的转变过程;强化以人为本,重视培养学生的学习能力,突出学生的自主学习性,建立新型师生关系,营造民主的教学氛围。另外,在练习的设计上,本节课力图通过加强对比训练,提高学生分析问题、解决问题的能力。

  【设计理念】

  利用比例的知识解答应用题,首先要判断两种相关联的量的关系,判断的过程就是正、反比例意义实际应用的过程,所以是比例应用题的重点,也是难点.正、反比例的应用题,学生在已学过的四则应用题中,实际上已经接触过,只是用归一、归总的方法来解答,因此在教学中可以运用迁移类比的转化思想进行教学,使新知识不新,旧知识不旧,激发学生学习兴趣.首先让学生用以前的方法解答,然后提问:“这道题里有怎样的的比例关系?为什么?”引导学生判断两种量的比例关系,最后根据比例的意义列出等式解答.这样加深了对比例的理解,又揭示了与旧知识的联系,既分散了难点,又教给了思维方法。

  通过本节的教学,使学生加深对正、反比例意义的理解,能够正确判断成正、反比例的量,会用比例的知识解答比较容易的应用题.

  【教学过程】

  一、铺垫孕伏(课件演示:比例的应用)

  判断下面每题中的两种量成什么比例关系?

  1、速度一定,路程和时间.

  2、路程一定,速度和时间.

  3、单价一定,总价和数量.

  4、每小时耕地的公顷数一定,耕地的总公顷数和时间.

  5、全校学生做操,每行站的人数和站的行数.

  【设计意图:通过基本数量关系式的分析让学生进一步熟练掌握正反比例的意义,为后面分析应用题做好铺垫。】

  二、探究新知

  (一)引入新课:我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题.这节课我们就来学习比例的应用.(板书:解比例应用题)

  (二)教学例5(课件演示:教材对话主题图)

  例5、张大妈上个月用了8吨水,水费是12.8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少元?

  学生利用以前的方法独立解答:

  先算出每吨水的价钱,再算10吨水的多少钱?

  12.8÷8×10

  =1.6×10

  =16(元)

  【设计意图:通过学生用原来学习的解答归一应用题的方法,能使学生进一步理解:单价一定的意义,为正确列出比例式打好基础了。】

  2、利用比例的知识解答.

  思考:这道题中涉及哪三种量?(水的单价、数量和总价三种量)

  哪种量是一定的?你是怎样知道的?(水的单价一定.)

  用水的数量和水费总价成什么比例关系?(水的数量和总价成正比例关系.)

  教师板书:单价一定,水的数量和总价成正比例

  教师追问:两家水的总价和用水量的什么相等?(比值相等,也就是水的'单价相等)

  怎么列出等式?

  解:设李奶奶家上个月水费x元.

  8x=12.8×10

  x=16

  答:李奶奶家上个月水费16元.

  3、怎样检验这道题做得是否正确?(学生自主完成)

  4、变式练习:张大妈上个月用了8吨水,水费是12.8元,王大爷上个月水费是19.2元,他们家上个月用了多少吨水?

  【设计意图:通过变式训练的订正和交流,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没有改变,只是未知量变了,这样可以让学生更加灵活地理解和解答这样的应用题。】

  (三)教学例6(课件演示例6主题图)

  例6:一批书如果每包20本,要捆18包,如果每包30本,要捆多少包?

  1、学生利用以前的算术方法独立解答.

  20×18÷30

  =360÷30

  =12(包)

  2、那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)

  这道题里的——————是一定的,__________和__________成__________比例.所以两次捆书的__________和__________的__________是相等的.

  3、如果设要捆x包,根据反比例的意义,谁能列出方程?

  30x=20×18

  x=360÷30

  x=12

  答:每捆12包.

  4、变式练习

  一批书如果每包20本,要捆18包,如果每捆15包,每包多少本?

  【设计意图:例6教学沿用了例5的教学形式,但放开了学生,让学生自主探究,明白正、反比例应用题的区别和联系,学生在解答过程中不但学会了分析正、反比例应用题的技巧,同时也能够区分两种应用题的解答方法】

  三、全课小结

  用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程.

  四、随堂练习

  1、先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答.

  (1)王师傅要生产一批零件,每小时生产50个,需要4小时完成,__________,__________?

  (2)王师傅4小时生产了200个零件,照这样计算,__________?

  2、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

  3、同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?

  【设计意图:通过由易到难,梯级训练,让学生对用比例解决问题有一个初步的巩固和训练,加深知识印象,同时也对本节课起到系统知识的目的,让学生形成一个完整的知识整体,为后面完成课堂作业做好准备】

  五、布置作业

  1、一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?

  2、用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本.如果每本16张,可以装订多少本?

  3、P60---做一做

  【设计意图:通过独立作业,让学生理解用比例解决问题的一般方法和技巧,理解应用比例解决问题的优势和好处,培养学生一题多解的解决问题的能力,发展学生的应用意识和实践能力,完成本节课的教学目标。】

  【板书设计】

  解比例应用题

  例5:例6:

  单价一定,总价和数量成正比例。总数量一定,每包本书和包数成反比例。

  解:设李奶奶家上个月水费x元.解:设要捆x包

  30x=20×18

  8x=12.8×10x=360÷30

  x=16x=12

  答:(略)答:(略)

  【教学后记】:

  正反比例应用题是小学阶段应该掌握的重点内容,这节课通过新旧知识之间的联系和以旧促新教学理念,设计了简单易学的教学过程,学生在学习的过程中,没有感到学习新知识的压力,能够轻松完成学习任务。同时通过变式训练和拓展训练,让学生掌握了正反比例应用题的相同点和不同点,为后面解答比例问题打好了坚实的基础。

  《比例的应用》教学设计 6

  教学内容:

  教材第106、107页例1,例2。

  教学要求:

  1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。

  2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。

  教学重点:

  认识正、反比例应用题的特点。

  教学难点:

  掌握用比例知识解答应用题的解题思路。

  教学过程:

  一、铺垫孕伏:

  1.判断下面的量各成什么比例。

  (1)工作效率一定,工作总量和工作时间。

  (2)路程一定,行驶的速度和时间。

  让学生先分别说出数量关系式,再判断。

  2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

  (1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

  (2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。

  指名学生口答,老师板书。

  3.引入新课。

  从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)

  二、自主探究:

  1.教学例1。

  (1)出示例1,让学生读题。

  提问:以前我们是怎样解答的?(板书算式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量?

  (2)说明:这道题还可以用比例知识解答。

  提问:题里再买几个同样的篮球说明什么一定?数量之间有怎样的关系式,两种相关联的量成什么比例关系?题里两次篮球个数与总价对应数值各是多少?这两次对应数值的什么相等?你能根据对应数值的比值相等,列出等式来解答吗?请大家自己试一试(启发弄清要设未知数x)。学生练习解题,然后口答,老师板书。追问:按过去的方法是先求什么再解答的?先求单一量的应用题现在用什么比例关系解答的?

  (3)小结:

  提问:谁来说一说,用正比例知识解答这道应用题要怎样想?怎样做?指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次篮球个数与总价对应数值比的比值相等,列等式解答。

  2.教学改编题。

  出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。

  3.教学例2。

  (1)出示例2,学生读题。

  提问:以前我们是怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:效率时间=总量)这道题里哪个数量是不变的量?

  (2)谁能仿照例l的解题过程,用比例知识来解答例2?请同学们自己来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的`。效率和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

  (3)提问:按过去的方法是先求什么再解答的?先求总量的应用题现在用什么比例关系解答的?谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的?指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次修地下管道相对应数值的乘积相等,列等式解答。

  4.小结解题思路。

  请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)

  三、巩固练习

  1.做练一练。

  指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。

  2.做练习十三第1题。

  先自己判断,小组交流,再集体订正。

  四、课堂小结

  这节课学习了什么内容?正、反比例应用题要怎样解答?你还认识了些什么?

  五、布置作业

  完成练习十三第2~6题的解答。

  《比例的应用》教学设计 7

  教学目标

  1、能根据地图推算实践以及根据实距绘制平面图,培养学生运用所学知识技能解决实际问题的能力。

  2、培养学生自主探究自主探究、合和交流的能力。

  3、感受数学与生活的联系,体验学习数学的价值,增强学习数学的情感。

  教学重点:

  理解比例尺的含义,能根据比例尺求图上距离或实际距离。

  教学准备

  理解比例尺的含义,能根据比例尺求图上距离或实际距离。

  课时分配

  共2课时。

  教学过程

  一、创设情境,引出问题

  师:通过课前的交流,我知道有不少同学到外地旅游过。这是因为现在的生活水平高了,有这方面的条件。最近几年,我们家也会利用节假日出外游玩,不过,我个习惯,到哪个城市,就想找那个城市的地图看看。请同学们猜一猜:王老师主要是想从地图上了解哪些方面的信息?

  估计学生可能猜出以下几种:看这个城市有哪几个景点,景点在这个城市的什么位置?看地图上的比例尺等,教师适时追问:①地图上怎么确定方向?②根据地图上的比例尺还能了解到什么?

  二、结合实际,探究新知

  1、看地图推算实距。

  教师出示南京市地图放在展示台上。

  (1)指名读出比例尺,并说说所表示的意思。

  (2)找出“雨花台”和“中山陵”2个景点,让学生辨认中山陵在雨花台的哪个方向?

  师:在地图上,这2个景点之间的实际距离还不到我一根手指那么长,而生活中它们之间的距离还很远的,那么怎样知道2点之间的实际距离呢?

  (3)指名测量图上距离,其它学生记录并列式计算实际距离。(4)集体交流计算方法。

  对于用到方程的方法解答的步骤要板书并予以强调。要求学生说清各种算法的算理。估计会出现多种算法,课堂上给予充分的时间交流。

  师:请同学们要注意,刚才计算出来的数是两个景点间的直线距离,二实际生活中,这两点间没有直来直去的路,而要绕弯走,因此实际走的路程要比实际距离来得多,我们现在研究的是两点间的直线距离。师:请同学们来总结一下,在刚才的测量与计算中,应该注意一些什么?

  2、练习:完成教材第49页例2

  学生独立完成,板书交流。

  10/x=1/500000

  X=10×500000

  X=5000000

  5000000厘米=5千米

  3、根据比例尺做平面图。

  出示例3:学校要建一个长80米,宽60米的长方形操场,请画出操场的平面图。

  (1)知道学生分组讨论。(2)你觉得应该怎么办?

  小组汇报:这道题没有比例尺,要画出平面图形,应该先确定比例尺。

  (3)很好,这是解决这道题的关键。用什么样的比例出尺比较合适呢?

  (4)根据比例尺确定图上的操场的长和宽。

  下面大家以1:1000为比例尺,算一算操场在平面图上的长和宽。

  80米=8000厘米60米=6000厘米

  8:8000=1:10006:6000=1:1000

  (5)让学生按正确的数据,做出图形。

  (6)下面同学们再试一试,先确定线段比例尺,看能不能解决。

  (7)引导学生总结根据比例尺做平面图形的.一般方法。

  4、小结并板书课题:

  请同学们回顾一下刚才的学习过程,不管是看地图还是画地图都要用到什么知识?这说明比例尺在我们的生活、工作中是很有用的,因此,我们不仅要知道它的意义,还要会利用它解决一些实际问题。

  三、拓展与练习

  1、请同学们想一想:在我们的生活、工作中,你还知道哪些地方会用到比例尺?

  2、我校明年要扩建一个大操场,计划长为120米,宽为80米,请你根据图纸的大小,从下面选出一个合适的比例尺,画出它的平面图。

  ①1:500②1:600③1:800

  板书设计:比例尺的应用

  80米=8000厘米60米=6000厘米

  8:8000=1:10006:6000=1:1000

  2.在这节课中,你的同桌哪些地方最值得你学习?

  《比例的应用》教学设计 8

  教学内容:

  课本第63页例2;练一练;《作业本》第28页。

  教学目标:

  进一步理解按比例分配的意义,巩固解答按比例分配的基本方法,并能应用按比例分配解决简单的实际问题。

  教学重点:

  在连比中按比例分配应用题的特征与解答方法

  教学难点:

  理解连比(三部分比)的意义与分数应用题的关系

  教学关键:

  理解连比(三部分比)的.意义

  教学过程:

  一、基本练习:

  1、你可以想到什么?

  (1)某班男、女生人数比是5∶4;

  (2)柳树、杨树棵数比是1∶6;

  (3)科技书和故事书比是5∶4。

  2、练习:

  (1)学校有故事书80本,故事书和科技书的本数之比是2∶3,科技书有多少本?

  (2)改编1题中的故事书80本为科技书有80本。

  分析:每题有多种不同的解法,想想你能列出几种不同的解法?

  二、新授

  1、出示例2:一种混凝土,由水泥、沙子和石子按2∶3∶5拌制而成。要配制这种混凝土6000千克,需要水泥、沙子和石子各多少千克?

  (1)想:2∶3∶5叫做水泥、沙子和石子这三种量的连比。意思是这种混凝土里水泥占2份,沙子占3份,石子占5份。

  (2)学生尝试解答。

  (3)反馈、讲评。

  2、试一试:一种青铜,内含铜88份,锡10份,锌2份。要炼制这种青铜400吨,需要铜、锡、锌各多少吨?

  3、补充:一个长方体的棱长总和是24厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少?

  三、练一练。P64。

  四、课堂小结。

  这堂课与上堂课有什么不同吗?你学会了什么?

  五、《作业本》第28页。

  《比例的应用》教学设计 9

  教学目标:

  1、能正确的判断应用题中涉及到的量成什么比例关系。

  2、能正确的用比例的知识解答比较简单的应用题。

  3、培养学生的分析、判断和推理能力。

  教学重点

  正确的判断应用题中的数量关系之间存在着什么样的比例关系。

  教训难点

  能根据正比例、反比例的意义列出含有未知数的等式。

  教学过程

  一、实际操作,引入新知识。

  (1)、让12个学生上讲台,站成相同的几组,可以怎样站?全班有48人,像他们这样站可以站成几组,或者每组可以站几人?

  (2)、让学生说说“每组人数、组数和总人数”这三个量的关系,每组人数、组数成什么比例关系。

  (3)、全班有48人,像他们这样站可以站成几组,或者每组可以站几人?

  (4)、你是怎样算的,可以列出式子吗?

  二、教学例1

  一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶了5小时,甲、乙两地之间的'公路长多少千米?

  1、指导分析,理解题意。

  2、学生自己想办法解答。

  3、师生探究用比例的知识解答。

  A、这道题中涉及到的量有哪些?

  B、哪种量一定(不变)?从哪里知道的?

  C、路程和时间成什么比例关系?判断的依据是什么?

  D、如果我们把甲乙两地之间的公路长看着X千米,那么我们根据正比例的意义可以列出一个怎样的方程?

  2小时和140千米相对应,5小时和X千米相对应,即可以列出比例:

  140:2=X:5

  E、学生列式并解答。

  F、说说怎样检验我们的计算结果呢?

  4、如果把例1中的第三个条件和问题交换,又该怎样来解答呢?

  一辆汽车2小时行驶140千米,照这样的速度,甲、乙两地之间的公路长350千米,从甲地到乙地需要几小时?

  学生自己解答,老师及时收集和处理反馈信息。

  三、教学例2

  一辆汽车从甲地开往乙地,每小时行驶70千米,5小时到达,如果需要4小时到达,平均每小时需行驶多少千米?

  1、引导分析,理解题意,找到相关的量。

  2、准确判断它们成什么比例关系。

  3、学生解答,及时收集和处理反馈信息。

  比较例1、例2的异同。

  四、小结

  用比例解答应用题的关键是要正确找出两种相关联的量,准确的判断它们成什么比例关系,然后根据正反比例的意义列出方程解答。

  《比例的应用》教学设计 10

  教学目标:

  1、掌握用正比例的方法解答相关应用题;

  2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解;

  3、培养学生分析问题、解决问题的能力;

  4、发展学生综合运用知识解决简单实际问题的能力。

  教学重点:

  掌握用正比例的方法解答应用题

  教学难点:

  能正确判断两种相关联的量成什么比例,正确列出比例式。

  教学过程:

  一、复习:出示

  二、谈话导入:

  1、在上新课之前,先考考大家我们的楼房有多么高?

  2、怎样测量它大概的高度呢?

  刚才同学们想出了很多的.方法去测量大概高度。今天我们学习一种新的方法──正比例应用题,学完后,我们试着用这种方法去计算楼房的大概高度。看谁学得最棒。

  三、新课教学:

  先来研究这样一个问题。

  1、出示例1

  一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

  2、分析解答应用题

  (1)请一位同学读一读题目

  (2)这道题要求什么?已知什么条件?

  (3)能不能用以前学过的方法解答?

  (4)让学生自己解答,边订正边板书:

  140÷2×5

  =70×5

  =350(千米)

  答:________________。

  3、激励引新

  这两种方法都合理,还可以有什么方法解答呢?

  学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?

  四、探讨新知

  1、提出问题

  师:请同学们结合课本上的例题,讨论以下问题。

  (1)题目中相关联的两种量是________和________。

  (2)________一定,_________和_________成_______比例关系。

  (3)______行驶的_____和_____的________相等。

  2、学生自学例题后小组讨论。

  3、组间交流:小组代表把讨论结果在班内交流

  4、学生尝试解答后评价(指名学生板演)

  5、怎样检验?把检验过程写出来。

  6、概括总结

  (1)用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就一定要用比例的方法解。

  (2)明确解题步骤。(板)

  用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。

  1.分析判断

  2.找出列比例式所需的相等关系

  3.设未知数列等式

  4.求解

  5.检验写答语

  五、练习提高

  1、变式练习,出示

  (1)例题改编

  ①如果把这道题的第三个和问题改成:“已知公路长350千米,需要行驶多少小时?”该怎样解答?

  ②让学生解答改编后的应用题,集体订正。

  ③小结:比较一下改编后的题和例1有什么联系和区别?

  例1的条件和问题以后,题中成正比例的关系仍没变,解答的方法出没有改变,只是要设需要行驶的小时数为x,列出的等式是:

  140/2=350/x

  (2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?

  2、基本练习,出示

  3、实践运用

  (1)汇报数据:刚才我们上课时提到怎样测量和计算楼房的大概高度,课前我请几位同学去测得一些数据。现在请这些同学跟我们汇报一下。

  (2)能用这些数据编一道正比例应用题吗?

  (3)小组合作编题

  六、总结

  今天我们学习的是如何用正比例的方法解答以前学过的应用题。解答的步骤怎样的呢?

  七、课后反思

  1、还有部分学生不理解正比例的意义

  2、不会判断是不是成正比例的关系

  3、列出的比例式不是正比例的形式

  《比例的应用》教学设计 11

  教学目标

  1.使学生理解按比例分配问题的意义。

  2.使学生掌握按比例分配应用题的结构及解答方法。

  3.掌握解题关键:根据比算出总份数及各部分量占总数量的几分之几。

  教学重点和难点

  1.理解按比例分配问题的意义。

  2.掌握怎样根据比算出总份数及各部分量占总数量的几分之几的解题方法。

  教学过程设计

  (一)复习准备

  1.复习比的有关知识,为学习新知识做准备。

  已知六年级1班男生人数和女生人数的比是3∶4。

  男生人数与全班人数的比是()∶()。

  女生人数与全班人数的比是()∶()。

  2.创设情境,提出课题。

  (1)妈妈有10块糖,平均分给哥哥和弟弟。每人可以得到几块糖?(每人可分到5块糖。)

  提问:妈妈是怎样分的?(平均分)

  (2)如果妈妈分给弟弟6块,分给哥哥4块,弟弟和哥哥糖数的比是多少?(弟弟和哥哥糖数的比是3∶2。)

  提问:这样分还是平均分吗?

  日常生活中,很多分配问题并不是平均分配,那么,你们想知道还可以按照什么分配吗?好,今天我们继续研究有关分配的问题。

  (二)学习新课

  1.讲解例2。

  例2一个农场计划在100公顷的地里种大豆和玉米,播种面积的比是3∶2。两种作物各播种多少公顷?

  (1)这道题是一道分配问题的应用题,想一想:分谁?按照什么分?求的是什么?

  (2)分析思考:看到播种大豆和玉米面积的比是3∶2这句话你想到了哪些倍数关系?小组讨论。

  ④玉米的面积与播种总面积的比是2∶5,玉米面积是播种面积的

  各小组选代表汇报,教师提前把学生要汇报的内容制成活动投影片,逐步出现。

  (3)解答例2。

  ①试试看,用你学过的知识来解答例2,并在学习小组内说说你是怎样想的?

  ②说说你是怎样做的?

  方法a:3+2=5

  播种大豆的面积10053=60(公顷)

  播种玉米的面积10052=40(公顷)

  方法b:总面积平均分成的份数为

  3+2=5

  ③比较一下这几种方法中哪种方法更好一些?为什么?(第二种方法好,好想好算。)

  说说这种方法的思路?(播种大豆和玉米面积的比是3∶2,就是说,在100公顷的地里,大豆地占3份,玉米地占2份,一共是5份,也就

  (4)这道题做得对不对?如何进行检验?请你检验一下同组同学做得对不对?(可以把求得的大豆和玉米的总面积相加,看是不是等于播种的总面积。或者可以把求得的大豆和玉米写成比的形式,看化简后是不是等于3∶2。)

  2.练习:第62页中的做一做(1)。

  六一班和六二班订《少年科学》的人数比是3∶4,两个班共订了49份。两个班各订了多少份?

  (1)弄懂题意。

  (2)提问:这道题分配的是什么?按照什么进行分配?(这道题分配的是49份报纸,按照3∶4的'比例分给六一班和六二班。)

  (3)独立完成。组员之间互相检验。

  3.学习例3。

  例3学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

  (1)小组讨论:这道题分配的是什么?按照什么来分配?(分配的是280棵树,按照一班、二班、三班的人数的比来分配。)

  (2)提问:根据一班、二班、三班人数怎样算出各班栽的棵数占总棵数的几分之几?

  (3)请你在练习本上独立完成。

  ①三个班的总人数:

  47+45+48=140(人)

  ②一班应栽的棵数:

  ③二班应栽的棵数:

  ④三班应栽的棵数:

  答:一班、二班、三班分别栽树94棵、90棵、96棵。

  (4)同组同学互相检验。

  4.练习:第62页中的做一做(2)。

  一种什锦糖是由奶糖、水果糖和酥糖按照3∶5∶2混合成的。要配制这样的水果糖500千克,需要奶糖、水果糖和酥糖各多少千克?

  (1)在练习本上独立完成。

  (2)同组同学互相检验。

  (三)课堂总结

  今天这节课我们学习了什么知识?(板书课题:按比例分配应用题)想想看这种应用题有什么特点?(已知总数量和部分量的比,求部分量是多少。)解答这种应用题怎样想?(把一个总数量按照一定的比来进行分配,就要先求出总份数,再看各部分量占总数量的几分之几,接着就可以求出各部分量。)

  回到准备题,问:平均分按几比几分配的?是不是按比例分配的应用题?指出平均分应用题是按比例分配的应用题的一种特殊情况。

  (四)巩固反馈

  1.填空练习:

  ①把35千克苹果平均分成7份,每份()千克,2份()千克,5份是()千克。

  2.专业户王大伯共养鸡和鸭2100只。鸡和鸭只数的比是4∶3。王大伯各养了多少只鸡和鸭?

  3.第62页的做一做(3)。

  一个三角形三条边的长度比是3∶5∶4,这个三角形的周长是36厘米。三条边的长度分别是多少厘米?

  与练习题2有什么区别?

  如果求它的最短边、最长边怎么求?

  4.判断练习:(正确举,错误举)

  一个长方形的周长是20分米,长与宽的比是3∶2,这个长方形的长和宽各是多少分米?

  (五)布置作业

  第63页第1,2,3,4题。

  《比例的应用》教学设计 12

  教学目标:

  1.使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,2.使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。

  3.培养学生的判断分析推理能力。

  教学重点:

  使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

  教学难点:

  学生通过分析应用题的已知条件和所求问题,确定那些量成什么比例关系,并利用正反比例的意义列出等式。

  教学过程:

  一、旧知铺垫

  1.下面各题两种量成什么比例?

  (1)一辆汽车行驶速度一定,所行的路程和所用时间。

  (2)从甲地到乙地,行驶的速度和时间。

  (3)每块地砖的面积一定,所需地砖的块数和所铺面积。

  (4)书的总本数一定,每包的本数和包装的包数。

  过程要求

  ①说一说两种量的变化情况。

  ②判断成什么比例。

  ③写出关系式。

  2.根据题意用等式表示。

  (1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。

  (2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。

  二、创设情境引入内容

  1.出示例5

  画面上张大妈与李奶奶的对话让我们知道了哪些数据?你能提出什么问题?

  学生回答后引出求水费的实际问题。

  你们学过解答这样的问题吗?能不能解答?让学生自己解答,交流解答的方法。

  引入:这样的问题可以用应用比例的知识来解答,我们今天就来学习用比例的知识进行解答。

  出示以下问题让学生思考和讨论

  ①问题中有哪两种量?

  ②它们成什么比例关系?你是根据什么判断的?

  ③根据这样的比例关系,你能列出等式吗?

  明确

  因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  学生讨论交流

  演示解题过程:设未知数,根据正比例的意义列出方程,接着解比例求出未知数。让学生检验所求的未知数x是否合乎题意。检验的方法是把求出的数代入原等式(即方程),看等式是否成立。把求出的16代入等式,左式==1.6,右式==1.6,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

  问题:王大爷家上个月的水费是19.2元,他们家上个月用多少吨水?

  要求学生应用比例的知识解答,然后交流。通过订正、交流,使学生明确条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了。

  2.出示例题6的`场景。

  同样先让学生用已学过的方法解答,然后学习用比例的知识解答。

  师:想一想,如果改变题目的条件和问题该怎样解答?

  出示以下问题让学生思考和讨论

  ①问题中有哪两种量?

  ②它们成什么比例关系?你是根据什么判断的?

  ③根据这样的比例关系,你能列出等式吗?

  注意启发学生根据反比例的意义来列等式,使学生进一步掌握两种量成反比例的特点和解决含反比例关系的问题的方法。

  让学生演示解题过程,集体修正。

  3.完成做一做,直接让学生用比例的知识解答

  问题:对照两题说一说两道题数量关系有什么不同,是怎样列式解答的。

  总结应用比例知识解答问题的步骤

  (1)分析题意,找到两种相关联的量,判断它们是否成比例,成什么比例。

  (2)依据正比例或反比例意义列出方程。

  (3)解方程(求解后检验),写答。

【《比例的应用》教学设计】相关文章:

比例的应用优秀教学设计(精选13篇)06-15

比与比例教学设计11-27

《解比例》教学设计03-23

比例的意义教学设计07-26

正比例教学设计07-01

《比的应用》教学设计08-15

比和比例教学设计(精选26篇)10-21

《反比例函数》教学设计10-27

比例的基本性质教学设计06-04

数学《比的应用》教学设计01-09