- 相关推荐
函数的概念第二课时教学设计
A【教学目标】
1.进一步加深对函数概念的理解,掌握同一函数的标准;
2.了解函数值域的概念并能熟练求解常见函数的定义域和值域.
3.经历求函数定义域及值域的过程,培养学生良好的数学学习品质。
B【教学重难点】
教学重点
能熟练求解常见函数的定义域和值域.
教学难点
对同一函数标准的理解,尤其对函数的对应法则相同的理解.
C【教学过程】
1、创设情境
下列函数f(x)与g(x)是否表示同一个函数?为什么?
(1)f(x)= (x-1) 0;g(x)=1 ; (2) f(x)=x;g(x)=x;
、(3)f(x)=x 2;g(x)=(x + 1) 2 ;(4) f(x) =|x|;g(x)=.
2、讲解新课
总结同一函数的标准:定义域相同、对应法则相同
3、典例
例1 求下列函数的定义域:
(1)y?x?1?x?1; (2)y?1
x2?3?5?x2;
分析: 一般来说,如果函数由解析式给出,则其定义域就是使解析式有意义的自变量的取值范围.当一个函数是由两个以上的数学式子的和、差、积、商的形式构成时,定义域是使各部分都有意义的公共部分的集合.
解 : (1)由??x?1?0,?x?1,得?即x?1,故函数y?x?1?x?1的定义域是[1,??). x?1?0,x??1,??
2???x?3?0,?x??,(2)由?得?即?5≤x≤5且x≠±, 2???5?x?0,???x?5,
故函数的定义域是{x|?≤x≤且x≠±3}.
点评: 求函数的定义域,其实质就是求使解析式各部分有意义的x的取值范围,列出不等式(组),然后求出它们的解集.其准则一般来说有以下几个:
① 分式中,分母不等于零.
② 偶次根式中,被开方数为非负数.
③ 对于y?x0中,要求 x≠0.
(专业的、优秀的、实惠的教育辅导机构)
y?(x?1)0
x|?xy?2x?3?1
2?x?
变式练习1求下列函数的定义域: (1);(2)1x.
?x?1?0,?x??1,(x?1)0解 (2)由?得? 故函数y?是{x|x<0,且x≠?1}. x|?x?x?0,?|x|?x?0,
3?x??,??2x?3?0,2?3? (4)由?2?x?0,即?x?2, ∴?≤x<2,且x≠0, 2?x?0?x?0,???
故函数的定义域是{x|?3≤x<2,且x≠0}. 2
说明:若A是函数y?f(x)的定义域,则对于A中的每一个x,在集合B都有一个值输出值y与之对应.我们将所有的输出值y组成的集合称为函数的值域.
因此我们可以知道:对于函数f:A
B而言,如果如果值域是C,那么C?B,因此不能将集合B
当成是函数的值域.
我们把函数的定义域、对应法则、值域称为函数的三要素.如果函数的对应法则与定义域都确定了,那么函数的值域也就确定了.
例2.求下列两个函数的定义域与值域:
(1)f (x)=(x-1)2+1,x∈{-1,0,1,2,3};
(2)f (x)=( x-1)2+1.
解:(1)函数的定义域为{-1,0,1,2,3},
f(-1)= 5,f(0)=2,f(1)=1,f(2)=2,f(3)=5,
所以这个函数的值域为{1,2,5}.
(2)函数的定义域为R,因为(x-1)2+1≥1,所以这个函数的值域为{y∣y≥1}
点评: 通过对函数的简单变形和观察,利用熟知的基本函数的值域,来求出函数的
值域的方法我们称为观察法.
变式练习2 求下列函数的值域:
2y?x?4x?6,x?[1,5); (1)
(2)y?3x?1
x?1; 解:(1)y?(x?2)2?2. x?[1,5)的图象, 作出函数y?x2?4x?6,由图观察得函数的值域为{y|2≤y<11}.
(专业的、优秀的、实惠的教育辅导机构)
(2)解法一:y?
的值域为{y|y≠3}. 解法二:把y?3x?1看成关于x的方程,变形得(y-3)x+(y+1)=0,该方程在原函数x?13(x?1)?444,显然可取0以外的一切实数,即所求函数?3?x?1x?1x?1
定义域{x|x≠-1}内有解的条件是
??y-3≠0,
?y+1,解得y≠3,即即所求函数的值域为{y|y≠3}. -≠-1??y-3
点评:(1)求函数值域是一个难点,应熟练掌握一些基本函数的值域和求值域的一些常用方法;
(2)求二次函数在区间上的值域问题,一般先配方,找出对称轴,在对照图象观察.
4、 课堂小结
(1)同一函数的标准:定义域相同、对应法则相同
(2)求解函数值域问题主要有两种方法:一是根据函数的图象和性质(或借助基本的函数的值域)由定义域直接推算;二是对于分式函数,利用分离常数法得到y的取值范围.
【函数的概念第二课时教学设计】相关文章:
一次函数的概念优秀教学设计13篇05-18
函数的教学设计10-08
幂函数教学设计06-18
《假如》第二课时教学设计06-07
识字第二课时教学设计08-30
瑞雪第二课时教学设计07-17
《家》第二课时教学设计10-11
李时珍第二课时的教学设计05-24
《雪儿》教学设计第二课时04-10
《比尾巴》第二课时教学设计09-22