教学设计

小数乘小数教学设计

时间:2023-07-05 05:21:05 教学设计 我要投稿

小数乘小数教学设计(精选5篇)

  作为一名专为他人授业解惑的人民教师,总不可避免地需要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。如何把教学设计做到重点突出呢?下面是小编为大家收集的小数乘小数教学设计,希望对大家有所帮助。

小数乘小数教学设计(精选5篇)

  小数乘小数教学设计 篇1

  教学目标

  1、结合具体的事物,经历自主探索小数乘小数的计算方法的过程。

  2、理解小数乘小数的计算方法,会笔算简单的小数乘小数的乘法。

  3、积极参与数学活动,获得借助计算器和运用自己的知识解决问题的成功体验。

  教学过程

  一、问题情境

  师生谈话,由介绍自己家的房间面积谈起,引出聪聪家客厅面积的问题。教师口述出示相关信息并板书。

  师:同学们,我们的身边有许多数学问题,我想了解一下,哪位同学知道自己小房间长和宽大约是多少,面积有多大?

  学生发言,教师对注意观察生活的学生给予表扬。

  师:我们先来算一算聪聪家客厅面积的问题。聪聪家客厅长4、8米,宽3、6米。

  教师板书:

  长4、8米 宽3、6米

  二、解决问题

  1、客厅面积。

  (1)提出问题(1),师生共同列出乘法算式。引导学生观察算式中的因数的特点。

  师:要求“聪聪家客厅的面积有多少平方米”怎样列式?

  学生说算式,教师板书:

  4、8×3、6=

  师:观察算式中的因数,你发现了什么?

  生:算式中两个因数都是小数。

  生:两个因数都是一位小数。

  师:观察的很仔细,今天我们就来研究小数乘小数的计算方法。

  板书课题:小数乘小数

  (2)提出估算的要求,让学生说一说自己是怎样想的。学生方法只要合理,就予以肯定。

  师:请同学们先估算一下,聪聪家客厅的面积大约是多少。

  给学生一点思考、估算的时间。

  师:谁来说一说,你是怎样估算的?结果是多少?

  学生可能出现以下方法:

  (1)把4、8看成5,把3、6看成4,5×4=20,所以客厅面积不到20平方米。

  (2)把4、8看成5,把3、6看成3、5,5×3、5=17、5,所以,聪聪家客厅的面积大约是17、5平方米。

  (3)把4、8看成4,把3、6看成3,4×3=12,聪聪家客厅的面积一定在12平方米以上。

  (3)提出用竖式计算的要求,讨论:两个因数都是一位小数怎么办?用整数相乘的方法算出48×36的积以后怎么办?让学生充分发表自己的想法。

  师:聪聪家客厅的面积不到20平方米。那么,到底是多少平方米呢?我们运用竖式计算一下。

  教师板书竖式:

  师:同学们,大家已经会用竖式计算小数乘整数了,这个算式中两个因数都是一位小数,怎么办?

  生:4、8扩大10倍是48,3、6扩大10倍是36,先算48×36。

  生:把两个因数分别扩大10倍,变成48×36。

  师:把两个因数分别扩大10倍,变成48和36。

  教师板书:

  师:用整数相乘的方法算出48乘36的积以后怎么办?

  学生可能出现不同意见。如:

  生:把积缩小100倍。

  生:把积缩小10倍。

  如果出现不同意见,教师进行指导。使学生了解,两个因数分别扩大10倍,就等于这两个因数的积扩大100倍。

  即 4、8×10×3、6×10=4、8×3、6×100

  (4)先讨论怎样计算,再师生共同完成竖式计算。重点讨论怎样确定小数点的位置。

  师:谁来说一说,4、8×3、6怎样用竖式计算?

  生:把4、8看作48,把3、6看作36,用整数乘整数的方法算出48乘36的积,再把积缩小100倍。

  师:好!请同学们说,我来写,我们共同完成竖式计算。

  教师随着学生的回答,板书:

  师:按整数相乘得出1728后,怎么办?

  生:把1728缩小100倍。

  生:从1728右边开始数出两位点上小数点。

  教师完成板书:

  2、沙发占地面积。

  (1)让学生读问题(2),并观察沙发图,了解其中的信息和要解决的问题,写出算式,并讨论算式中两个因数的特点。

  师:通过计算,我们知道了客厅的占地面积是17、28平方米,聪聪家客厅中摆放着一个沙发,请看18页的.沙发图,并认真读一读文字,说说你了解到哪些信息,要解决的问题是什么?

  生:沙发的长是1、8米,宽是0、85米。

  生:问题是沙发占地多少平方米?

  师:求沙发占地多少平方米?怎样列式?

  学生可能说出不同的算式,教师肯定并板书。

  0、85×1、8

  师:同学们看一看这个算式的两个因数,你发现了什么?

  生:这个算式中的两个因数都是小数。

  生:两个因数一个是一位小数,一个是两位小数。

  (2)提出:“怎样用竖式计算”的问题,进行讨论,然后师生共同完成,竖式计算。在横式中写得数时,告诉学生,根据分数的基本性质,小数末尾的0可以不写。

  师:这样的两个小数相乘,用竖式计算怎样算呢?

  教师板书竖式:

  生1:1、8扩大10倍是18,0、85扩大1000倍是85,先算出18乘85的积,再把这个积缩小1000倍。

  生2:先按整数相乘的方法计算85×18,再把积缩小1000倍。

  学生说的只要合理就给予肯定。

  师:好!就按大家说的方法,我们一起算一算。大家说,我来写。

  学生说,教师板书。

  师:按整数相乘的方法算出85×18等于1530后,怎么办?

  生1:把1530缩小1000倍,在1的后面点上小数点。

  生2:从1530的右边开始数出三位,在前面点上小数点。

  教师在竖式中点上小数点。

  师:大家看今天算出的这个小数积比较特殊,小数的末位是0,根据小数的基本性质,在横式写得数时,小数末尾的0可以不写。

  完成横式:

  0、85×1、8=1、53(平方米)

  (3)让学生用计算器检验,得到确定答案。

  师:用竖式算的对不对呢?请同学们用计算器检验一下。

  学生计算交流。

  三、归纳总结

  让学生观察两个竖式,说一说因数和积的小数位数有什么关系,使学生了解:两个因数一共有几位小数,积就有几位小数。再师生共同总结归纳小数乘小数的计算方法。

  师:观察两个竖式中的因数和积,你发现它们的小数位数有什么关系?

  生:小数乘小数,两个小数一共有几位小数,积里面就有几位小数。

  生:积的小数位数就是两个因数小数位数的和。

  师:观察的很认真。知道了两个因数和积中小数位数的这种关系,在计算小数乘法时,不计算,我们就能判断积的小数位数。谁能说一说小数乘小数的计算方法?

  生1:按照整数乘法的计算方法算出积。

  生2:看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

  最后,教师完整的口述小数乘小数的笔算方法。

  师:小数乘小数,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

  四、尝试应用

  1、提出问题(3),让学生自己读题并观察茶几图,了解信息和要解决的问题,列出算式,先估计积有几位小数,再用竖式计算。

  师:请同学们看19页第(3)题中的图及文字,说说你知道了哪些信息,问题是什么?

  生:茶几的长是0、9米,宽是0、45米,要求茶几的面大约是多少平方米。

  师:怎么列式?

  学生说,教师板书:

  0、45×0、9=

  师:估计一下,0、45×0、9的积有几位小数?为什么?

  生:三位。因为两个因数一共有三位小数,所以它们的积也一定是三位小数。

  师:请同学们试着用竖式计算。

  学生自主笔算,教师巡视,个别指导。请一名好学生板演。

  2、订正学生计算的结果,重点说一说怎样确定积中小数点的位置。

  师:谁和板演的结果不一样?

  如果学生出现小数点点错的,就结合错题进行指导。如果没有,请板演的同学说一说确定小数点时是怎样想的。如:

  生:先用整数相乘的方法算出45×9等于405。因为两个因数一共有三位小数,所以,也要从405的右边开始数出三位,405正好是三位,就在4的前面点上小数点,整数部分写0。

  3、“试一试”,先让学生说一说怎样确定小数点的位置,再自己试写。交流时,让学生说一说怎样想的。

  师:下面我们一起来看“试一试”,根据126×12=1512,直接写出下面各题的积。你知道怎样确定小数点的位置吗?

  生:看两个因数一共有几位小数。

  五、课堂练习

  1、“练一练”的第1题。让学生先判断积有几位小数,再计算,最后全班交流。

  师:请看“练一练”第1题,判断一下,积有几位小数。

  指名回答。

  师:请同学们在练习本上计算。

  学生自主计算,教师巡视,注意帮助学习有困难的学生。

  2、“练一练”的第2题,先引导学生弄懂题意,再独立完成。

  师:请同学们读一读第2题,说说你从中了解到了哪些信息?

  学生说出“大门和侧门的宽度和高度”的信息。

  师:学校大门和侧门的面积各是多少?请同学们算一算。

  小数乘小数教学设计 篇2

  教学目标:

  1.通过旧知迁移,引导学生自主探究、逐步理解小数乘小数的算理,掌握基本算法。

  2.使学生掌握在确定积的小数点位置时,小数位数不够的,要在前面用0补足.

  3.培养学生运用迁移的数学思想解决新问题的能力。

  教学重点:小数乘小数的计算方法。

  教学难点:小数乘法中积的小数位数和小数点位置的确定。

  教学过程:

  一、课前热身

  1、分享一个小数点的故事,让学生意识到小数点的重要性。

  2、复习一个数分别乘0.1、0.01、0.001得多少,

  结论:一个非0的数乘0.1相当于把原数缩小10倍,乘0.01相当于把原数缩小100倍乘0.001相当于把原数缩小1000倍。

  3、复习口算乘法。

  4、复习整数乘小数笔算乘法及计算方法。

  二、类比迁移,情境展开教学例3。

  .出示例题。

  (1)师:同学们,最近我们要给学校宣传栏刷油漆,你能帮忙算算需要多少千克油漆吗,

  (2)师:在计算需要多少千克油漆之前,需要先算出什么呢,

  (3)板书(或用PPT演示):2.4×0.8,________

  2.尝试计算。

  (1)师:同学们,请观察这个小数乘法算式,它与我们上节课学习的小数乘法有什么不同,(两个因数都是小数。)

  (2)师:我们上节课学习的小数乘整数是怎样计算的,那两个因数都是小数又怎么计算呢,

  (3)师:小数乘整数是把小数转化成整数进行计算的,现在能否还用这个方法来计算2.4×0.8呢,如果能,应该怎样做?

  (4)指名学生口答,教师适时板书学生的讨论结果。

  3.理解算理。

  引导学生得出:先把第一个因数2.4乘10变成24,积就乘了10;再把第二个因数0.8乘10变成8,积就又乘了10,这时的积就乘了100。要得到原来的积,就应把乘得的积192除以100,得1.92。

  4.进一步明确算理(两个因数的.小数位数不同)。

  (1)计算出了宣传栏的面积后,怎样计算需要多少千克油漆呢,

  (2)板书:1.92×0.9,________

  (3)师:这道题也可以先按整数乘法计算吗,积里的小数点应该点在哪里呢,

  三、深化探究,总结算法

  (一)探究因数与积的小数位数的关系。

  1.学生独立完成第5页的“做一做”。

  2.师:观察例3及“做一做”各题中因数与积的小数位数,你能发现什么,

  (二)小结小数乘法的计算方法

  1.组织学生回顾、讨论小数乘法是怎样计算的。

  2.组织学生汇报、交流自己的计算方法。

  (1)师:你是怎样计算的,(先按整数乘法算出积,再点小数点。)

  (2)师:怎样确定积的小数点的位置,(点小数点时,先看因数中一共有几位小数,就从积的最右边起数出几位,再点上小数点。)

  3.根据学生的讨论和交流,逐步归纳概括出小数乘法的计算方法,并让学生将教材第6页小数乘法的计算方法补充完整。

  (三)、引发冲突,突破难点。

  教学例4

  1.出示例题。

  (1)师:同学们,我们刚刚总结了小数乘法的计算方法,你能运用小数乘法的计算方法来计算下面这道题吗,

  (2)板书(或用PPT演示):0.56×0.04,________

  2.尝试计算。

  (1)学生尝试计算,教师巡视,了解学生的计算情况和遇到的问题。

  (2)师:在计算时,遇到了什么新问题,

  (3)师:乘得的积的小数位数不够时,怎样点小数点呢,

  (4)总结算理:乘、点、画、添

  小数乘小数教学设计 篇3

  教学目标:

  1.通过自主探究, 使学生理解并掌握小数乘小数的方法,能正确计算相应的式题.

  2.学生在探索计算方法的过程中,培养初步的推理能力以及抽象、概括能力.

  3.通过学习使学生进一步体会数学知识之间的内在联系,感受数学探索活动本身的乐趣,增强学好数学的信心.

  教学重难点:掌握小数乘小数的方法,会熟练的进行笔算,并能解决实际问题。掌握小数末尾的0的处理方法。

  教学准备:多媒体课件

  教学过程:

  一.情境导入

  1、师:小明家最近搬进了风景优美的月馨小区。(课件出示) 瞧!这是小明房间的平面图,从图中你能获得哪些数学信息?

  2、师:根据这些数学信息,你能提出什么数学问题呢?

  3、 师:同学们提出了很多有价值的问题。我们先来解决“房间的面积有多大?”你会列式吗?(生答)

  4、 师:(板书:3.6×2.8)这道算式和我们以前学习的小数乘法有什么不同?(前面学习的是小数乘整数,而这道算式的两个因数都是小数)

  5、师:今天我们就来探讨“小数乘小数的计算方法”。板书课题:小数乘小数

  二、合作交流

  (一) 例题引导,探究算法

  1、师:你估计小明房间的面积大约是多少平方米吗?

  怎样估的?(房间的面积在什么范围内?)

  2、师:小明的房间究竟有多大呢?拿出导学案,小组内交流一下,你是如何运用前面的知识、方法求得3.6×2.8的积的。

  a、谁来说说你的做法?

  (尽可能让学生多说一些方法)

  b、老师发现已有不少同学采用了竖式计算,谁上黑板来写一写。(学生书写竖式)(如果有小数点点错的,也板书上去)

  师:你能告诉大家你是把小数乘小数的问题变成什么来计算的呢?你是受什么启发想到这样做的呢?

  (生:由小数乘整数的计算方法想到的)

  师:真会思考。(表扬)

  师:那他计算的结果对不呢吗?(我们刚才估的是 ),刚才还有同学告诉我说自己是用计算器算的,那他的.结果与你用计算器算的一样吗?

  3、师:刚才我们从小数乘整数的算法联想到小数乘小数。结果为什么是10.08而不是100.8或1.008呢?

  思考并交流:导学案合作交流问题3。

  全班交流问题3(呈现幻灯片:把3.6×2.8都看成整数,这两个因数发生了什么变化?36×28的结果和3.6×2.8的结果之间到底有什么关系?为什么?)

  (重点交流:积发生了什么变化?要由36×28的结果得到3.6×2.8的结果,应该怎么办?一个数除以100,只要 )

  指向:积由原来的整数变成了两位小数。所以是10.08。

  (教师小结:两个因数都乘10后,得到的数就等于原来的积乘100,要求原来的积,就要反过来把1008除以100,从右边起数出两位点上小数点。所以3.6×2.8的积是两位小数。)

  通过推理,我们再次证实了3.6×2.8=10.08,(一起答)

  4、补充答语。

  (二)、教学“试一试”,强化算理的理解。

  1、提出问题:小明还有一个明亮的阳台,它的面积又是多少平方米呢??谁说说列式?

  (2.8×1.15),

  2、师:考虑一下,你会怎样写这个竖式?为什么?

  (1.15写在上面,2.8写在下面)

  生:因为我们是把1.15和2.8都看成整数来计算的,所以三位数写在上面,两位数写在下面更简便。

  3、师:对了,我们要学会选择合理的算法。知道怎么做吗?好,打开课本,把你的思考过程在书上填一填。

  a.交流:谁来说说是怎样得到1.15乘2.8的积的?

  b.追问:115乘28得到3220后怎么得到1.15乘2.8的积呢?(除以1000)为什么?(学生把理说得很清晰就不追问)

  引导学生表达:把两个因数都看成整数,等于把一个因数乘100,另一个因数乘10,所以得到的积就等于原来的积乘1000,要得到原来的积,就要用3220除以1000。

  c.到此结束了吗?还需( )。根据是什么?

  d.在这里是先点上小数点还是先简化?为什么?

  4、你能跟你的同桌说说下面两题该怎么计算吗?(同桌交流:不计算,只说想法)(汇报想法。)

  4.27×2.6 = 6.3×4.2=

  (三)寻找规律,概括算法

  1、师:我们刚才都是把小数看成整数来计算,然后再根据积的变化规律把整数的积还原成小数的积。如果每题都这样去想是不是很麻烦?这当中有没有什么规律可寻呢?

  2、提出问题a、观察上述各题的两个因数分别是几位小数,积是几位小数?

  b 、通过比较,你发现积的小数位数与因数的小数位数有什么关系?

  (幻灯片呈现:两个因数一共有几位小数,积就有几位小数。)

  师:小数乘整数符合这个规律吗?

  3、师:发现了这个规律,你是否感觉到小数乘小数变得太简单了?

  4、小数乘小数应该如何计算呢?(把你的想法在小组内交流)

  (生说)(幻灯片呈现)

  交流:先干什么?(按整数乘法算出积)再干什么?(给积点上小数点)如何确定小数点的位置?(看因数中一共有几位小数,就从积的右边起数出几位,点上小数点)积的末尾有0怎么办?(先点小数点,在把0去掉)

  (简单点说就是:一算 二数 三点点 四化简)

  三.巩固提升:

  1、你能给下面两题的积点上小数点吗?

  ①指名口答

  ②小数点为什么点在这里?

  2、下面我们再来看看这两位同学点的小数点。先看对不对?然后改正,并思考其错误的原因可能是什么?

  3、师:同学们的思考非常积极,计算题我们不光要知道怎么做,还要把它做对。

  (在导学案上完成用竖式计算) (看谁做得又快又对)(讲评:突出横式写答案)

  4、师:今天同学们的表现都非常棒。小数乘小数在生活中也有着广泛的应用。

  (呈现幻灯片)一种西服面料,每米的售价58.5元,买这样的面料5.2米,应付多少元?(先估计得数,再计算)

  ①看题目。

  ②谁来说说你怎么估的。

  ③结果是不是300元左右呢?在导学案上列式解答。

  ④指名一人口答。58.5×5.2=304.2(元)(呈现)

  四、思维拓展:

  过渡:接下来,老师还想看看谁的反应快。快速抢答,直接说出下面各题的积。(准备)(第一题)

  1、根据148×23=3404,直接说出下面各题的积。

  14.8×2.3= 1.48×2.3= 14.8×0.23=

  过渡:同学们今天注意力比较集中,所以思维都很敏捷。做事就应该这样。老师这里还有一题。

  2、根据156×27=4212,你能在括号内填上适当的数,使等式成立吗?

  ( )×( )=4.212

  (看谁想到的答案多)

  五、回顾反思:这节你有什么收获?还有哪些疑问?

  六、当堂检测:

  1、在算式6.29×3.2中,如果两个因数同时扩大10倍,积就扩大( )倍;如果一个因数扩大10倍,另一个因数缩小10倍,积( )。

  2、在计算2.17×1.2时,可以先看作( )×( ),它的积是( )。因为两个因数共有( )位小数,所以2.17×1.2的积也是( )位小数,也就是( )。

  3、计算。 9.8×0.3= 41.4×2.5= 0.03×67.5=

  小数乘小数,它是在学生学习了小数乘整数的基础上进行教学的。在整个过程中,我放手让学生充分运用已有知识自己去探索,凭学生自己的理解来寻找解决新问题的方法。

  (1)独立尝试。学生在独立计算2.8×3.6时,势必会根据对前面小数乘以整数的算法和算理的理解来进行计算,这一尝试可充分暴露学生的思维过程,我充分了解学生计算小数乘以小数时在认知上的难点,为接下来有针对性、有重点的教学找准了最佳的切入口。

  (2)交流各自的算法与想法。在交流中,我让不同层次的学生畅谈自己的算法与想法。如在计算小数乘小数的过程中,我首先让学生估算2.8×3.6的结果最大是多少,最小是多少,然后让学生再进行计算,来判断自己的计算是否正确。我充分尊重学生,让尽可能多的学生创造性地参与到计算的探索过程中来,对学生的各种不同的算法与想法展示给全班学生,让学生进一步感悟算理,获得方法。最后通过比较小数乘法,学生明白了:先按整数乘法的计算方法得出积,再看两个因数中一共有几位小数,就从积的右边起数出几位,点上小数点。通过试一试让学生明白先点小数点再化简。我本人认为很简单,但学生在做题中出现的错误较多:

  1)由于马虎出现计算性错误。

  2)两个因数中,第二个是中间有零的,学生计算时特别容易把数位对错。

  3)在计算结果中把积的小数位数数错,导致小数点的位置点错。我让同学自己找找原因,先想想小数乘法的计算方法,然后再跟错题比较一下,这时候有的同学能自己找出错题的原因,这样才能给学生留下深刻的印象,以至下次做题时不会再犯相同的错误。我想在课上这样强调,会大大减少学生的出错。

  小数乘小数教学设计 篇4

  一、教学目标:

  1.使学生通过自主探究,理解并掌握小数乘小数的方法,能正确计算相应的式题.

  2.使学生在探索计算方法的过程中,培养初步的推理能力以及抽象、概括能力.

  3.使学生进一步体会数学知识之间的内在联系,感受数学探索活动本身的乐趣,增强学好数学的信心.

  二、教学重难点:

  掌握小数乘小数的方法,会熟练的进行笔算,并能解决实际问题。掌握小数末尾的0的处理方法。

  三、教具准备:课件、图片

  四、教学课时:一课时

  五、教学过程的设计

  ㈠情境导入

  1、师:同学们,进入了二十一世纪,每位同学家里的生活条件都好了,住进了楼房。(课件出示)焦老师想采访一下,你家的住房面积有多大?

  生:122平方米;116平方米……

  师:你的小房间面积又有多大呢?

  生:16平方米;48平方米(引导孩子想一想一平方米大约有多大,48平方米不太符合实际。)

  2、师:我们看,这是小芳同学房间的平面图。(课件出示)

  你能求出她房间的面积吗?

  生:能。

  师:怎样列式?

  生:3.6×3板书:3.6×3

  师:为什么用3.6×3?

  生:因为小芳房间的平面图是一个长方形的图形,我们要求小芳房间的面积实际就是求这个长方形的面积。

  师:说的真好。那怎样计算3.6×3呢?

  生:把3.6看成36与3相乘,得到108。因为因数中有几位小数,积有几位小数,3.6的因数是一位小数,积也应该是一位小数。所以要在108中点上小数点。

  生:先按整数乘法来算,再看因数里有几位小数,就从积的右边起数出几位,点上小数点。

  3、师:说的真好。所以小芳房间的面积是10.8平方米。

  板书:3.6×3=10.8(平方米)

  接着看,这是小明同学房间的平面图。(课件出示)

  师:从图中,你能搜集到哪些信息?

  生:我知道了小明房间是长是3.6米,宽是2.8米;阳台的宽是1.15米。

  师:根据这些信息,你能提出哪些用乘法计算的数学问题?

  生:小明房间的面积是多少?

  生:小明家阳台的面积是多少?

  生:小明家房间和阳台的面积一共是多少?

  师:要求小明家房间和阳台的面积一共是多少?先要解决什么问题?

  生:小明房间的面积是多少?和小明家阳台的面积是多少?

  师:求房间的`面积有多大怎么样列式?(课件)

  师:阳台的面积有多大怎么样列式?

  生:板书:3.6×2.8=2.8×1.15=

  4、师:观察一下;例1和复习题有什么区别?

  生:复习题是小数乘整数,例题是小数乘小数。

  师:今天我们就一起来研究小数乘小数。

  ㈡引导探究

  1、师:你能估计一下房间的面积大约是多少?

  你是怎样估计的?房间的面积在什么范围内?

  生:我估计房间的面积在12平方米左右。我把3.6看成4,把2.8看成3,用4×3=12(平方米)

  师:那是12平方米吗?

  生:不是,比12平方米要小。

  师:有和他不一样的吗?

  生:我把3.6看成3,2.8看成3,用3×3=9(平方米)。所以我估计面积是9平方米左右。

  生:我根据3.6×3=10.8(平方米),我估计面积不到10.8平方米。

  (如果学生答不出来,师:提示:和3.6×3比较一下,你觉得是多一点还是少一点?为什么?

  生:少一点,因为3.6×3=10.8,而我们要求的是3.6×2.8还不到3,所以积肯定比10.8要小。)

  师:那么到底谁估计的比较准确呢?下面我们就来精确的算一算。

  2、师:怎样计算3.6×2.8呢?会算吗?把你的想法说在小组里交流,在把讨论的过程写下来。(四人小组讨论)

  生1:把3.6米换算成36分米,把2.8米换算成28分米,用36×28=1008(平方分米)再把1008平方分米换算成10.08平方米。板书:36×28

  生2:我们已经学过小数乘整数,只要把其中一个因数扩大10倍,与另一个因数去乘,在把积除以10倍就可以了。3.6不变,把2.8扩×10倍变成28,用3.6×28=100.8,在把积缩小10倍就是10.08。板书:3.6×2836×2.8

  生3:用竖式计算:3.6×2.8。

  师:用竖式计算,你是怎样算的?

  生:先摆竖式,把3.6×10倍看作36,把2.8×10看作28,在计算36×28=1008,在把积除以100倍,点上小数点。

  学生说的时候板书计算过程。

  师:谁能再说一说,他是怎么做的?

  生:把3.6×10=36,把2.8×10=28,用36×28。

  师:那就和谁的想法一致啦?

  师:接着说。

  生:计算出36×28=1008,在除以100倍,得到10.08。

  师:为什么要缩小100倍?

  生:因为3.6×10,2.8×10倍,一共乘了100。要想得到原来3.6×2.8的积就要除以100倍。

  师:说的很好,我们一起来看把3.6×10,再看另一个因数2.8也乘10

  两次一共扩乘了多少?

  生:100。

  师:1008是怎么来的?

  生:把3.6×10变成36,2.8×10变成28,用36×28得到1008。

  师:这是不是3.6×2.8的结果?

  生:不是。

  师:我们要得到3.6×2.8的积要怎么办?

  生:把1008÷100倍。

  师:说的真好,谁在来说说你是怎样算的?(多请几个学生说)

  生:把把3.6×10倍变成36,2.8×10倍变成28,用36×28得到1008。

  我们要得到3.6×2.8的积要把1008÷100倍,就是10.08。

  师:通过计算,我们得出3.6×2.8的积是多少?

  生:通过计算,我们得出3.6×2.8的积是10.08平方米。

  师:大家说的真棒!我们来看,这里的虚线框实际上是我们想的过程,一般我们不把它写出来,只写虚线框外面的部分。都算出小明房间的面积了吗?我们来看看那位同学估计的最准确?

  生:估计10.8的同学。

  ㈢自主发现

  1、师:刚才我们还想知道小明家阳台的面积,用竖式计算应该如何摆呢?

  生:1.15×2.8或2.8×1.15

  师:为什么要怎样摆?你觉那种摆法更好点?

  生:因为我们是把1.15和2.8都看成整数来计算的,所以三位数写在上面,两位数写在下面更简便。

  师:对了我们要学会选择合理的算法。会做吗?老师相信你们肯定能算出来。打开书完成填空。写完的同学给我一个暗示。

  师:你是怎样做的?

  生:先看一个因数乘100倍,另一个因数乘10倍,积就乘100倍,就从积的右边起数出三位,点上小数点。

  师:结果是3.220,为什么等号后面写3.22?怎样化简?为什么可以这样化简?

  生:根据小数的性质,我们可以把小数末尾的"0"化简。

  小结:老师明白了,他是先看一个因数乘100倍,另一个因数乘10倍,积就乘100倍,就从积的右边起数出三位,点上小数点。是3.220。再把小数末尾的0舍去。这样比较简便,我说的对吗?我们来看,这里的虚线框实际上是我们想的过程,一般我们不把它写出来。你们知道该怎样写吗?

  学生说教师板书,

  2.师:我们刚才都是把小数看成整数来计算,然后再把整数还原成小数。如果每题都这样去想是不是很麻烦?你能找到更简便的方法吗?下面我们一起来讨论.(出示讨论题)指名读题。

  ⑴例题中的两个因数分别是几位小数?积是几位小数?

  ⑵"试一试"中的两个因数分别是几位小数?积是几位小数?

  ⑶通过比较,你发现上面两题中两个因数与积的小数位数有什么关系?

  师:小组讨论,依次回答.你的发现是什么?

  生:我发现两个因数的小数位数的和就是积的小数位数。

  生:两个因数一共有几位小数,积就有几位小数。

  师:通过这三道讨论题,我们能不能总结一下,小数乘小数应该怎样计算?

  生:小数乘小数,先按照整数乘法来算,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

  3、师:说的很好,下面我来考考你们。

  不计算你能准确判断出下面每题的积是几位小数吗?

  5.2×9.9=51.484.8×0.86=4.128

  0.62×0.73=0.45268.65×4.8=41.52

  最后一题出现要化简的情况。重点强调一下。

  8.65×4.8的积应该是三位小数,可它的末尾有"0",根据小数的性质进行化简,化简后就是两位小数了。

  ㈣巩固练习.

  1、师:我已经按整数计算出它的积,要想得到原来的积,你能为它点上小数点吗?

  生:第一题因数中一共有2位小数,积就因该有两位小数。

  第二题因数中一共有3位小数,积就因该有三位小数。

  第三题因数中二共有2位小数,积就因该有两位小数。但是要把小数末尾的"0"化简。积就是一位小数量

  2、师:同学们说的很好,下面我们来计算两道题。

  87页练一练的第二题。

  3.46×1.2=4.1521.8×4.5=8.1

  第一题要注意因数中有三位小数,积就应该有三位小数。

  第二题注意要先点上小数点在化简。第二题你是怎样算的?

  全课小结:通过今天这节课的学习,你有什么收获?

  反思

  一、链接生活情境,激活相关经验

  紧扣例题,教师从与学生生活息息相关的住房问题入手,使学生顺利进入本课的学习。通过对两个算式的比较,直截了当地进入本课的主题:小数乘小数。这样的导入,生动活泼,很好地体现了数学来源于生活,同时又服务于生活的教学新理念 不难看出,新课导入时,教师就链接了生活情境,激活了学生相关的学习经验。通过1.2×4与1.2×4.5两个算式,既自然复习了旧知识(小数乘整数),又激活了新知识的生长点,给计算教学增添了浓郁的现实意义。

  二、开放学习空间,自主探索实践

  小学生的思维是在有效的数学活动中发生、发展的。新授环节先后组织了两次有效的探究活动。

  第一次:出示小明家的房间平面图,要求学生观察,提出问题并列出乘法算式。学生很快发现,可依次求出房间、小床、阳台的面积。

  教师随机板书了3.6×2.8、1.95×1.1、1.15×2.8三个算式,先让学生进行估算。接着,启发思考:“你认为这些算式最值得认真研究的问题是什么?”在学生交流的基础上,出示活动要求:利用工具(计算器)探究,可以两人合作,研究内容是积的小数位数的规律。

  两次开放的探究活动,让学生运用原有的知识经验自主地进行估算、口算、笔算,在培养学生的估算能力、计算能力的同时,点亮了教材细节,帮助学生灵活掌握了小数乘小数的算理算法。

  小数乘小数教学设计 篇5

  教学内容:

  九年义务教育第九册教科书第4页的例子。

  教学目标:

  1、使学生理解小数的意义,掌握小数乘法的计算法则,并能正确地进行计算。

  2、引导学生感觉转化的思想方法,培养学生的类推、迁移的能力。

  3、进行爱护公物、保护学校环境的品德教育。

  教学重点和难点:

  重点是在理解小数乘和小数意义的基础上掌握计算方法。

  难点是让学生自主探索小数乘法的计算方法,能正确地进行笔算。

  教具准备:

  课件、小黑板

  教学过程:

  一、复习铺垫,生活引入。

  1、 复习铺垫

  ⑴0.7表示十分之(  )

  0.38表示 (  )

  0.925表示(  )

  ⑵计算 :1.36×12 3.08×25 3.6×21

  【设计意图:设计与本课题密切联系的复习题.将本课所学内容与前面知识有机结合起来,让学生感知数学知识内在联系了。】

  2、生活引入新课

  师:同学们,我们校门口的宣传栏上的玻璃碎了,今天老师和你们一起去换玻璃,你们愿去吗?

  生:愿去。

  师:电脑显示宣传栏的特写镜头,学校宣传栏长1.2米,宽0.8米,如果要给这宣传栏换玻璃,需要多大一块玻璃?小明想了半天也不知该换多大的一块玻璃?

  师:同学们,小明遇到了什么困难?

  生:小明不知该换多大一块的玻璃?

  师:你们乐意帮助小明解决这个问题吗?

  生:乐意!

  二、新知探究

  1、自主合作探究

  师:同学们都很热情,请同学们先自主探究算出换多大一块玻璃。

  让生合作探究、讨论、计算。

  师:同学们能力很强,很快就算出结果,请小组先派一名代表。

  a组代表:算法:1.2×0.8=1.2÷10×8=0.96(平方米)

  算理:我们组把1.2平均分成10份,求8份是多少?

  b组代表:算法

  1.2 扩大到要的10倍  12

  ×0.8 扩大到要的10倍  ×8

  0.9 6 缩小到要的  9 6

  算理:我们组经过讨论,我们先把1.2×0.8看成12×8再算出积,然后把积缩小要的100 ,再点上小数点。

  3、 交流评价,掌握算法算理

  师:刚才每个小组都展示了算法和算理,现在有不同意风要提出质疑的。

  师:同学们,你们都很热情帮助别人,现在教师需要换块长1.5米,宽0.9米的.玻璃,需要多大的一块玻璃?请你们选择适合自己的方法帮老师算一算.

  生1:我会算,应换1.35平方米。

  师 :你们能把计算过程向大家说一说吗?

  生:我先把1.5×0.9看成整数乘法,然后按照整数乘法法则算出积,最后看因数中一共有几位小数,就从右边数出几们点上小数点.

  1 .5 扩大到要的10倍  15

  ×0. 9 扩大到要的10倍  ×9

  1.3 5 缩小到要的  135

  师:你发现了什么?

  3.练习:完成p4做一做.

  学生独立作,做完后指名说

  师:今天我们学习了小数乘小数,你们还有什么疑问吗?老师可有个问题想问大家,如果所乘得的积的位数不够怎么办?

  小组讨论: 积的位数不够时,需添:“0”补足。

  4.总结小数乘法的计算法.

  ⑴ 计算小数乘法转化成整数乘法进行计算。

  ⑵ 看因数中一菜有几位小数,就从积的右边数出几位,点上小数点。

  ⑶ 积的位数不够,需要用“0”补足。

  【设计意图:采用学生个体自主探究,小组合作探究和老师的点拨形式,充分发挥“学生主使”作用了。】

  四、课堂练习

  1.自主练习:p6练习

  2.选择:

  ⑴ 两个小数相乘,积一定( )

  a.大于 b.小于 c.等于小数乘小数教学设计 相关内容:第四单元分数的意义和性质教案 2,真分数和假分数 真分数和假分数的意义及特征2、5的倍数的特征的教学案例人教版新课标五上 二、小数除法 5 第五课时

  ⑵ a×b<a (a、b均大于0),则b ( )

  a.> b.< c.=

  ⑶ 下面各式中乘积最小的是( )

  a.12.75×8.3 b.127.5×8.3 c.12.75×0.83

【小数乘小数教学设计】相关文章:

小数乘小数教学设计09-21

小数乘小数教学设计通用09-23

小数乘小数教学设计15篇02-25

小数乘小数的教案(通用12篇)08-28

小数乘法教学设计06-15

《小数的意义》教学设计05-18

认识小数教学设计09-19

小数的大小比较教学设计01-17

关于认识小数的教学设计10-06

小数的初步认识教学设计09-08