教学设计

找次品教学设计与反思

时间:2024-04-30 18:55:14 维泽 教学设计 我要投稿
  • 相关推荐

找次品教学设计与反思模板(通用10篇)

  在社会一步步向前发展的今天,课堂教学是重要的工作之一,反思意为自我反省。我们该怎么去写反思呢?下面是小编收集整理的找次品教学设计与反思模板,供大家参考借鉴,希望可以帮助到有需要的朋友。

找次品教学设计与反思模板(通用10篇)

  找次品教学设计与反思 1

  教学目标:

  1、让学生通过找次品的操作活动和分析、归纳的理性思考,发现解决这类问题的最佳策略-把待测物品平均分3组。

  2、以“找次品”活动为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。

  3、让学生体会用缩小范围逐步逼近的方法来解决问题的数学思想,培养学生思考问题的严密性和口头语言表达的逻辑性。

  教学重点:

  发现解决这类问题的最佳策略。

  教学难点:

  理解并认可最佳策略的有效性。

  教学准备:

  课件

  学具准备:

  12个小圆片

  一、 确定研究方法――用天平称。

  师:你们知道伦敦奥运会的开幕时间吗?(2012年7月28日03时12分)2012伦敦奥运会就要到了,为了使每个运动员都能打好每场比赛,工厂里对每个体育器材都要进行严格的检查,绝对不能出现次品,否则就会影响运动员的成绩,这不有个工人不小心,把一个次品球与2个好球混到了一起,你们愿意帮帮他找出那一个次品球吗?(出示课件)你们有哪些方法呢?

  生1:用手掂一掂,轻的就是次品。

  生2:用天平称。

  师:刚才有同学说使用天平,大家见过天平吗?

  (课件出示天平图片)

  师:天平有两个托盘,如果两个托盘里的物品质量相等,天平就(请用手势表示)保持平衡,如果不相等,轻的一端就会怎么样(上扬),重的一端就会怎么样(下沉)。

  师:如果使用天平来找出这3个球中的一个次品球,你打算怎么样称?

  生:天平两端各放1个,(是任意拿的吗)如果天平两端平衡,那天平外的那个就是次品;如果天平两端不平衡,那次品就在上扬的一端。

  学生在说的时候出示相应的课件。师:能这样称吗?学生齐读。

  ③师和学生一起小结:刚才在称的过程中,天平出现了几种情况?(2种),一种是两边相等的情况,也就是―――天平平衡(板书:平衡),第二种情况时天平一边高,一边低,也就是不平衡。(板书:不平衡)

  这3 个球不管天平平衡不平衡,称一次,就保证能找到次品。(保证找到)在生活中常常有这样一些情况,在一些看起来完全相同的物品中混着一个质量不同的,轻一点或者是重一点,我们习惯把这类物品称之为“次品”。

  ④今天这节课我们就一起研究像这样用天平称来找次品的方法。(板书课题:找次品)

  二、初步认识“找次品”的基本解决方法。

  (体会找次品要求中的“保证、至少”和“全面的考虑问题”的数学思想方法)

  师:3个太少了,是吧,你看,不用老师教,你们都知道了。我们来点挑战性的。想挑战吗?请听题:如果你是一个工厂产品检测员,现在有243个零件,里面有1个是次品,用天平称,至少称几次一定能够保证找到次品?

  师:哪位同学大胆来猜测一下?

  生1,生2,生3

  师:没关系,既然是猜测,就允许出错,只要你认为有道理,就大胆地说出来。 师:你能验证到第几次呢?有办法吗?数量太多验证不出来那怎么办呢? 生:可以从小点开始研究。

  师:你们觉得可以从多少开始研究?

  师说:那我们就从5开始好吗? 请看大屏幕。

  课件出示问题:这里有 5 瓶钙片,其中 1 瓶少了 3 片,是次品,你能设法把它找出来。

  1、生独立审题

  师:这道题什么意思?

  (课件出示要求)要求:同桌合作用手模拟天平,用5个学具(圆片)当钙片。

  思考:

  (1)把待测物品(5 瓶钙片)分成几份?每份是多少?

  (2)假如天平平衡,次品在哪里?

  (3)假如天平不平衡,次品在哪里?

  (4)至少称几次能保证找出次品来?

  2、学生独立活动。

  3、学生汇报、演示。

  A、第1个学生汇报,是分成5(2,2,1),天平每边各放两个,如果天平不平衡,那么次品就在上扬的.那两个中,再把那两个分别放在天平的两边,哪边上扬,那么那个就是次品,至少要称2次。如果天平平衡,那么天平外那个就是次品,只要称一次。当学生在说的时候教师相应的板书。师:你们听懂了吗?谁再来说说他是怎么称的。(课件演示。)

  师:称一次能保证找到次品吗?对吗,运气好可能一次能找到次品,如果运气不好,那就要两次才能保证找到次品。

  还有不同的称法吗?

  B、第2个学生汇报分法:分5份(1,1,1,1,1)每份1个。天平每边各放1个,如果天平不平衡,那个上扬的那个就是次品。

  师:找到次品了吗?能保证找到吗?

  生1:用这种方法称球,称1次只是可能找出次品,而不是一定能找出次品,如果天平不平衡,那次品就在剩下的3个中,需要再称一次,也就是至少要称2次才能保证找到次品。(教师板书。)谁也来说说这种称法。(课件演示。)

  师:虽然方法不同,却得到一个相同的结论。那就是5个物体中找到1个次品,用天平称,至少称( 2 )次保证能找出次品来。

  师:好了。3个,5个的问题解决了,在一些物品中找到1个次品,大家已经有了初步的手段和方法了。

  现在我们把数量再增加些,看看能否找到一种最简便的方法。

  三、 寻找找次品的最优方法,体现缩小范围的思想方法。

  1、出示题目 :有9个网球,其中一个网球是次品,它比其它的网球重一些,用天平称,至少称几次就保证能找出次品来?

  师:这题是什么意思?请学生说说题意。

  生:有九个网球,其中一个重一些,是次品,用天平称,称几次能保证找到次品。

  师:大家可以选择学具摆,也可以在纸上像老师这样用图表示,先想把9个网球分成几份,每份是多少。

  假如天平平衡,次品在哪里?

  假如天平不平衡,次品在哪里?

  至少称几次能保证找出次品来?再想一想称一次至少能排除几个,也就是次品一定不在哪几个中。开始吧。

  师:刚才老师发现大家的有很多种不同的方法,现在把你的方法与小组同学交流一下,小组长负责把每种不同的方法记录在这张实验报告单中。大家再观察实验报告单并比一比哪一种是最优策略,想一想为什么?并选一个代表汇报你们组的方法。

  2、学生活动

  3、汇报分法及操作过程,教师相应出示课件。

  师:哪一组同学的代表愿意来汇报一下。(点出相应的课件)

  ①(分3份(4、4、1)的方法)生:天平两边各放在4个,如果天平平衡,那剩下的那个就是次品,如果两边不平衡,下沉的那个盘子的4个再分成(2,2),分别放在天平的两边,这时一定有一边下沉,然后再把那两个分成(1,1)放在天平的两边,这时下沉的那边一定是次品,保证能找出次品需要称的3次。师:你这种方法称一次至少排除几个?出示课件:5个

  师:还有不同的方法吗?

  ②(分5份(2、2、2、2、1的方法)

  师:2个2的称,如果不平衡,次品在下沉的那个盘子里,再把2个分成(1,1)下沉那个就是次品。如果两边平衡,次品在剩下的5个中,这时天边两边再放两个,如果平衡,那么剩下的那个是次品,如果不平衡,再把下沉的那两个分别放在天平的两边,保证能找出次品需要称的3次。师:你这种方法称一次至少排除几个?出示课件;4个

  还有其他的方法吗?

  ③(分3份(3、3、3)的方法)生:天平两边各放三个,如果天平平衡,那次品就在剩下的三个中,如果不平衡,那么次品就在下沉的那一边。再把3分成(1,1,1)如果两边平衡,次品就是剩下的那一个,如果两边不平衡,次品就是较轻的那一个。保证能找出次品需要称2次。

  师:你这种方法称一次至少排除几个?板书:6个

  还有不同的方法吗?9:(2,2,2,3)3次9:(1,1,1,1,1,1,1,1,1)4次。

  师:9有很多分法,可是能保证找到次品需要称的次数是不一样的,最好的方法是怎么样分保证找到次品的次数最少?为什么呢?

  生:分成三份,称一次排除的个数比较多,师:那我们要先考虑分成几份呢?(3份)

  师:这两种都是分成三份,哪一种更好?为什么?生:平均分成3份保证称一次排除的个数是最多的。

  师:那谁再来说说这种的称法?出示课件。

  师;最好的方法是怎么样分保证找到次品的次数最少?

  出示课件:分3份 平均分

  3)小结:9个物品中找到1个次品,用天平称,平均分成3份,至少称2次保证可以找到次品。

  三、推测:

  师:那从27个物品中找一个次品需要称几次就能保证找到次品,你是怎么样分的。

  生:27(9,9,9)9个物品中找到1个次品,至少称2次保证可以找到次品。27个物品中找一个次品需要称3次就能保证找到次品。

  师:你真是聪明的孩子。那81个呢?怎么样分?

  生:81(27,27,27)只需要称4次就能找到次品

  师:243个?

  师:刚开始的时候大家说多少次啊?现在是不是有一种不可思议的感觉?这就是数学的魅力,它的魅力我们是无法用语言去形容的,是需要用心去体会的。

  四、全课总结。

  师:今天我们主要是研究物品总数是3的倍数如何来找次品,如果不是3的倍数,比如10个,11个,25个等等,又该如何呢?这就是我们下一节要探索的内容。 大声告诉我今天我们学了一节什么课?如何找次品?什么样的方法是最简单的?谈谈你的收获吧。

  板书:找 次 品

  5(,1)2次 保证找到

  5(,1)2次

  教学反思:

  找次品”是五年级下学期数学广角里的教学内容,属于一节思维训练课,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法。

  找次品教学设计与反思 2

  教学内容:

  《义务教育课程标准实验教科书数学五年级下册》 第134~135页。

  教学目标:

  1.能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。

  2.以“找次品”为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。

  3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  教学重点:

  经历观察、猜测、试验、推理的思维过程,归纳出解决问题的最优策略。

  教学难点:

  脱离实物,借助纸笔帮助分析“找次品”的问题。

  教、学具准备:

  教师用具: 3瓶口香糖、课件 学生用具:10张圆形纸片

  教学过程:

  一、初步认识“找次品”的基本原理

  1.创设情景,自主探索。

  (1)师:出示3瓶口香糖,提出问题:现在这里有3瓶口香糖,其中有一瓶少了3片,我们就把那一瓶称为次品,(板书:次品)你能用什么办法很快地找到哪一瓶是次品?

  生1:数一数里面有多少粒,哪一瓶比另外两瓶少了3粒,就把那瓶找出来了。

  师:你是用数的方法来找的

  生2:还可以用天平来称。

  师:用天平称。好!天平大家见过吗? 生:见过。

  师:天平上面有两个托盘。如果两个托盘里的东西一样重,天平就会怎么样?

  生:平衡。

  师:如果不一样重呢? 生:天平会一边高,一边低。

  师:低的那边物品比较,高的那边物品比较。

  2.引导学生探索用天平找次品的方法。

  师:大家想一想:有3瓶口香糖,其中有一瓶是次品,利用天平来称,至少称几次一定能找到次品?

  生答并演示称法。

  3.揭示课题。

  好!在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,利用天平把它找出来,我们把这类问题叫做找次品。(板书课题:找次品)

  二、初步认识“找次品”的基本解决手段和方法

  1.设疑:

  师:刚才3瓶中有一瓶是次品,利用天平来称,至少几次就一定能找出次品?

  生:1次。

  师:如果不是3瓶,而是2187瓶,你估计要多少次? 点2名学生回答。

  师: 2187瓶到底需要称多少次?今天我们就来解决这个问题。2187这个数怎么样?

  生:很大。

  师:我们碰到数据很大的时候,可以用一个策略。可以把这个很大的数变得很小,我们从很小的数开始研究,逐渐寻找规律。这种策略叫做化繁为简。(板书:化繁为简)

  那么我们就从很小的数开始研究。刚才3瓶已经研究过了,那再研究大一点的数?

  (5)师:我们就来研究5瓶,5瓶中有一瓶是次品,用天平秤来称,至少几次可以保证找到次品?

  2.课件出示问题,引导学生利用学具自主探索:拿出5个圆片代替5瓶口香糖,思考一下,怎样找出次品?

  3.独立思考,有一定思维结果的时候组织小组交流。指导学生在交流中比较方法。

  4.全班汇报。

  师:你是怎么称的?天平左右两边怎么放?

  生1:(1,1,3)→(1,1,1)2次

  生2:(2,2,1)→(1,1)2次

  师: 不管这样分组,还是这样分组,都是几次保证找到?(2次)

  5.教师小结:利用天平找次品,除了可以利用学具,还可以画出这样的示意图来帮助我们思考。

  三、解决9件物品中有一件是次品的问题,归纳出找次品的最优方法。

  5个离2187 还差很多,规律还没找出来,怎么办?再增加几个?板书:9

  1、课件出示问题:9瓶中有一瓶是次品,用天平秤来称,至少几次可以保证找到次品?教师引导分析方法:你可以用圆片摆一摆,也可以像老师这样做记录,看看至少需要几次就一定能找出次品。

  2、自主探索。

  3、学生汇报称法:

  生1:(1,1,1,1,1,1,1,1,1)4次

  生2::(4,4,1)→(2,2)→(1,1)3次

  生3::(2,2,5)→(2,2,1)→(1,1)

  生4::(3,3,3)→(1,1,1)2次

  4、教师先引导学生观察、梳理一遍,然后进行比较:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?

  提示:这种方法一开始就怎么分的?分成了几份?

  5、小结:把9瓶口香糖分成3部分,并且平均分,能够保证找出次品而且称的.次数最少。板书:平均分成3部分

  四、推测多件物品中找次品的解决办法

  1、提出猜测:那么,是否在所有的找次品问题中,这样平均分成3份的方法能保证找出次品而且所需次数一定最少呢?

  2、要验证我们的猜想对不对,怎么验证?我们再增加几个来试一下。如果有12瓶,(板书:12)其中有一瓶是次品,按刚才我们的猜想应该怎么分称的次数就最少而且一定能找出次品?(生:平均分成3份,即4,4,4)。迅速在草稿纸上分析一下,看看至少需要几次就一定能找出次品?

  生:(4,4,4)→(2,2)→(1,1)3次

  我们再来看看别的分法能不能比3次更少。还有哪些分法?

  生:(2 2 8)(3 3 6)(5 5 2)(6 6) 请同学们选择一种分法在纸上进行分析。

  全班汇报,引导学生比较:有没有哪种分法能让称的次数更少而且保证找出次品?

  3、与学生一起小结:这样看来在利用天平找次品的时候,把待测物品分成3份,并且平均分的方法能保证找出次品而且称的次数一定最少,这说明我们刚才的猜想是对的。

  五、拓展训练

  1、9瓶需要2次,如果是27瓶中有一个次品,至少称几次保证能找到次品?

  2、如果81瓶呢?243瓶呢?729瓶呢?2187瓶?

  3、小结:开始我们猜测是2000多次,经过探究我们发现:用数学的眼光去看只要7次,相差如此之大,这就是数学的魅力。

  4、思考:刚才我们研究的9、12、27和81等都是3的倍数,如果不是3的倍数,又该怎么办呢?大家课后想一想,我们下节课来研究这个问题。

  六、课堂总结:

  今天我们学的是找次品的第一课时,当物品数是3的倍数时,利用天平找次品,怎样分组需要称的次数最少?

  板书设计:

  教后反思:

  最近根据学校教导处的安排,我上了这节“找次品”的公开课,上完课后感慨颇多,对有效的课堂教学有了更深的认识。

  一、体现“由易到难”的思想。

  教材首先出示例1通过利用天平找出5件物品中的1件次品,让学生初步认识找次品的基本方法。我认为在学生初次接触“找次品”问题时,对从5件物品中找出1件次品,难度偏大,学生学习起来有困难。于是我在课本例1的前面,增加了“从3个物品中找1个次品”的内容, 这样学生学习起来就较易掌握,当学生理解了从3个物品中找1个次品的最优方法,然后再来探究5个、9个的情况。这样降低学生的思维难度,体现了由易到难的思想。而且从3个物品中找1个次品的最优方法,是均分3份思想的基本模型,把这种情况加以研究确实有必要。另外,考虑到“找次品”的问题比较复杂,一节课的时间有限,将教学内容限定在称量物品的个数是3的倍数的情况展开探究,为下节课探究不是3的倍数的情况作好铺垫。

  二、渗透“化繁为简”的思想。

  我在教学中体现了化繁为简的数学思想:把复杂的问题简单化,再从解决简单的问题中发现规律,用这个规律解决复杂的问题。在本节课的开始就设计了让学生猜“2187瓶中有一瓶是次品,用天平称,至少要称几次一定能找出次品”,学生猜无论如何都要一千多次,要解决这个难题,我们首先研究3瓶、5瓶、9瓶等逐渐寻找规律和方法,最后找到“均分3份来称所需的次数最少”的方法,然后用找到的方法来解决从2187瓶中找次品的问题。后来经过探究后发现从2187瓶中找一瓶次品只要称7次即可,在这种强烈的对比之中学生感受到数学思想方法的魅力,数学的奇妙!从而激发了学生数学的欲望。

  三、体验“猜想验证”的数学思想方法。

  猜想验证是一种重要的数学思想方法,正如荷兰数学教育家弗赖登塔尔所说“真正的数学家——常常凭借数学的直觉思维做出各种猜想,然后加以证实。”因此,小学数学教学中教师要重视猜想验证思想方法的渗透,以增强学生主动探索、获取数学知识的能力,促进学生创新能力的发展。

  本节课就让学生经历了“实验探究——猜想——验证——归纳”的过程。首先从9瓶中找1瓶次品的几种方法的对比中,我们发现均分3份的方法所需的次数最少,是否无论是多少瓶都是均分3份的方法所需的次数最少呢?为了验证这一猜想,就必须再用一个例子去试验,然后归纳得出结论。学生通过经历知识的形成过程,不仅获得了数学结论,更重要的是逐步学会了获得数学结论的思想方法——猜想验证,提高了主动探索、获取知识的能力,增强了学好数学的信心。

  找次品教学设计与反思 3

  一、教学目标:

  1.让学生初步认识“找次品”这类问题的基本解决手段和方法。

  2.学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  二、教学重难点:

  1.让学生初步认识“找次品”这类问题的基本解决手段和方法。体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  2.观察归纳“找次品”这类问题的最优策略。

  三、教学准备:

  课件、圆片(三角形)

  四、教学过程:

  (一)游戏导入,引出新课

  师:上课之前,老师想和大家做一个游戏,考考大家的眼力,你们愿意吗?

  生:愿意。

  师:(课件出示图片)请找出下面两幅图的不同。

  学生汇报

  生1:第一幅图C处不同。

  生2:第二幅图C处不同。

  师:同学们可真厉害!这么快就找到了两幅图中的不同之处。现在有两瓶口香糖(课件出示),可是有一瓶被一名调皮的学生吃了两颗,这两瓶口香糖的外观都一样,你能帮帮老师怎样找出那瓶少了两颗的口香糖吗?

  学生讨论,汇报

  生:可以用天平称一称,少了两颗口香糖的那瓶应该略轻一些,把这两瓶口香糖分别放在天平的左右两边,天平向上的一面就是少了两颗口香糖的那瓶。

  师:你说的很好!在生活中常常有这样的情况,在一些看似完全相同的物品中混着一个质量不同(轻一些或是重一些)的物品,需要用天平把它找出来,像这一类问题我们把它叫做找次品。这节课我们就来研究《找次品》(板书课题)

  (二)探究新知

  1.从三瓶中找到次品

  师:刚才同学们很快的从两瓶中找到了次品,如果老师这儿有三盒口盒糖,其中有一盒是少了两粒的,你有什么办法帮忙将它找出来吗?

  生:用天平找。

  师:不错,依然用天平来帮助我们找到次品。

  提示:

  (1)你把待测物品分成几份?每份是多少?

  (2)假如天平平衡,次品在哪里?

  (3)假如天平不平衡,次品又在哪里?

  生:可以把待测物品分成3份,每份有1个。假如天平平衡,剩下的就是次品,如果天平不平衡,天平上升的一侧是次品。

  根据学生的汇报教师课件演示。

  2.从五瓶中找到次品

  师:同学们太厉害了。老师又拿来了两盒口香糖,和前面的三盒混在一起,你还能用天平将那盒吃了两粒的口香糖找出来吗?(课件出示)

  同桌合作完成,汇报

  生1:可以把这5瓶口香糖分成5份,每份是1瓶,分别标上1~5号,先拿出1号和2号称,如果天平不平衡,轻的一侧就是次品;如果天平平衡,称3号和4号,同样,如果天平不平衡,轻的一侧是次品;如果天平平衡,那么5号是次品。

  师:你说的很完整。如果按照你这样称,至少需要称几次?

  生1:至少需要称2次。

  师:还有没有不同的方法?

  生2:我们把这5瓶口香糖分成3份,有两份中有两瓶,一份中有一瓶。现在天平的左边和右边分别放上2瓶口香糖,如果天平平衡,则剩下的那瓶就是次品;如果天平不平衡,看哪一面轻,把轻的这侧的两瓶口香糖再分别放入天平的`两侧,轻的一侧就是次品。至少需要称2次。

  3.探究从多种方法中“找次品”的最佳方案。

  师:这两个同学的方法都很好,都能在几盒口香糖里找出轻的那盒次品来,那如果有的次品是比是重一些的,那你又能不能把它找出来呢?请同学们一小组为单位探讨,(课件出示例2)有9个零件,其中有一个是次品(次品重一些),用天平称,至少称几次就一定能找出次品来?

  让生自己审题,并找出重点、关键的词语,课件用点标出重点词语:次品重、至少、一定。

  根据学生的回答,课件演示

  师:在9个物体中,我们要找到次品就有4种方法,如果待测物体更多,方法也就越多。我们每一次都这么找会很麻烦,有没有什么规律呢?请同学们观察屏幕中的表格,看一看哪种方法我们称的最快?

  生:第三种方法最快,只称了两次就找到了次品。

  师:这种方法我们是分成了几份?怎么分的?

  生:平均分成了3份。

  师:是否所有的次品都可以平均分成3份吗?如果不是怎么办?

  生:不能平均分成3份的时候,要分得尽量平均。

  师:很好,就像前面我们从5个产品中找次品一样,可以把它分成三份,并且要尽量分得平均。

  (三)巩固练习

  1.如果零件是10个,你认为怎样分最好?学生思考后回答,10(3,3,4)如果零件是11个呢?11(4,4,3)

  2.数学书136页第2题。

  (四)总结

  师:这节课我们主要是学了如何找次品,那找次品的最好方法是什么?(课件出示)“同学们这节课上得不错,其实在日常生活中,我们经常会遇到这样的问题,希望同学们多观察、多思考,从而发现更多知识。”

  找次品教学设计与反思 4

  教学目标:

  1.通过观察、猜测、实验、推理等活动,体会解决这类问题策略的多样性及运用优化的方法解决问题的有效性。

  2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  3.培养学生的合作意识和探究兴趣。

  教学重点:

  经历观察、猜测、实验、推理的思维过程,归纳出解决问题的最优策略。

  教学难点:

  观察归纳“找次品”这类问题的最优策略。教学准备:课件、简易天平、5瓶木糖醇、每生5个小正方体、实验记录表格。

  教学过程:

  一、创设情景,初步感知:

  (一)、出示问题情境一(用实物演示)有3瓶一样的木糖醇,其中1瓶少了3颗,请你想办法把它找出来。

  1、学生独立思考。

  2、全班交流。(用课件展示天平模型)教师边演示边叙述。

  结论:两瓶可以一次找出次品

  3、3瓶的时候怎么找出来呢?在天平的左右两边各放1瓶,如果不平衡,说明次品就在翘起来的那边,如果平衡,说明次品就是另外一瓶。

  结论:三瓶也可以一次找出次品

  (二)、出示问题情境二

  1、如果在5瓶中呢?利用天平看谁最快把次品找出来。

  (1)现在我这里有5瓶口香糖,其中1瓶少了3片,你能想办法找把它找出来吗?

  (2)学生小组合作

  师提示:大家可以拿出小正方体,用手摸拟天平摆摆看

  (3)生汇报,师板书:5(2,2,1)-2(1,1);2次5(1,1,1,1,1)1次

  (4)师质疑:称1次能找到吗?一定能找到吗?称2次呢?

  (5)师小结:从5瓶口香糖中找次品,用天平只需要称2次就一定能找到。

  (板书:5瓶称2次)

  二、深入探究,寻找规律:

  在9瓶木糖醇中,有一瓶是次品,(次品轻一些)用天平称,称几次就保证能找出次品来?

  1、小组合作,讨论,交流,并完成以下表格:

  木糖醇的总数

  分成的份数

  每份的'数量

  保证能找出次品

  需要称的次数9 3 4、4、1

  3 9 3 3、3、3

  2 9 5 2、2、2、2、1

  3 9 9 1、1、1、1、1、1、1、1、1 4

  2、全班交流,统一认识,优化方法。

  结论:九瓶也只要两次可以保证找出次品最优策略:

  1、把待测物品分成三份。

  2、尽量平均分,不能均分的,也应该使多的一份与少的一份只相差1。

  三、智慧冲浪,提升思维。

  1、练习二十六第2题师:有15盒饼干,其中的14盒质量相同,另有1盒少了几块,如果能用天平称,至少几次保证可以找出这盒饼干?

  2、书本做一做

  (1)师:有10瓶水,其中9瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?

  (2)如果是11瓶呢?又需要称多少次才能保证找到次品呢?

  师小结:两种方法都很有道理,如果是我会选第一种,因为它更接近了,平均分成3份。这个方法到底是不是一定成立呢?大家不妨课后再举更大的数据来试试验证。

  四、师小结:

  今天我们学了什么?

  五、作业:

  书本练习二十六第1—3题附板书设计:平均分分成3份所称次数最少尽量平均分

  找次品教学设计与反思 5

  教学内容

  教科书P111~112例1、例2及“做一做”,完成教科书P113“练习二十七”中第1题。

  教学目标

  1、初步理解找次品的含义,明确找次品的基本思路,探索找次品的一般方法。

  2、经历观察、猜测、试验、推理等活动,探索解决问题的策略,渗透优化思想,感受解决问题策略的多样性,培养观察、分析、推理的能力。

  3、经历解决简单问题的过程,初步培养学生的应用意识和解决实际问题的能力。

  教学重点

  寻找用天平原理找次品的最优方案。

  教学难点

  经历找次品的过程,掌握找次品的方法,体验最优方案的原理。

  教学准备

  课件,天平,3瓶未拆封的钙片,每名学生5张扑克牌,记录单。

  教学过程

  一、创设现实情境,生成问题

  教师出示3瓶外观一样的钙片。

  师:同学们,看看我手上有什么?它们是一样的吗?

  【学情预设】从外观看,有的学生初步确定是一样的;也有的学生可能想到,仅仅从外观看,还不能确定是否一样。

  师:看来同学们不仅会观察,还有批判性思维,真棒!

  师:老师手中这3瓶钙片,看起来是一样的,但其实是有一瓶少了一些。生活中常常有一些看似完全相同的物品中混着一个质量不同的物品(重一点或轻一点),需要想办法把它找出来,我们把这类问题称为找次品问题。

  【设计意图】利用学生熟悉的物品,通过外观一样而里面不一样,激发学生的思维,引导学生用数学的眼光看问题。

  二、经历探究过程,领会找次品的基本思路

  1、认识天平。

  教师出示实物天平,认识天平。

  师:同学们,认识这个工具吗?你们会使用天平吗?如果天平平衡说明什么?

  【学情预设】在此之前,学生已经接触过天平,认识了天平的组成部分。在这里教师应重点引导学生理解,天平两边平衡说明两边的物体同样重,哪边的托盘向下,就说明那边的物体稍重,反之则稍轻。

  2、从3瓶钙片中找次品,感悟找次品的基本思路。

  课件出示教科书P111例1。

  教学笔记

  【教学提示】

  可以让学生用双手演示天平,表演重的一端向下。教师喊“右边重”“左边重”“一样重”等口令,学生演示。

  师:运用天平,怎样才能很快地找出哪一瓶是次品呢?谁来说说你的想法?

  师:大家觉得这种方法怎么样?还有别的方法吗?

  师:那要怎么称?称几次就能找出这瓶次品呢?

  师:谁明白他的意思?能上来再演示一下吗?

  学生上讲台边说边演示。

  师:你们的想法真好,因为天平有两个托盘,次品的位置只有两个托盘上和天平外三个地方,用天平称一次就能确定次品在什么位置,所以从三瓶钙片中找次品时平均分成三份,不仅天平左右两边的两瓶参与了比较,天平外的那瓶也参与了比较。

  【学情预设】此时学生可能会想到用手掂一掂、倒出来数一数等方法。面对这些方法,学生也可能会提出用手掂并不准确,而倒出来数又不卫生,如果学生未能想到这些,教师要引导学生分析这些方法的不合理性。

  师:你们还有别的方法吗?

  【学情预设】有的学生可能会说用有砝码的天平一个一个去称,2次可找到,也有的学生可能会说用没砝码的天平来称,1次可找到。

  【设计意图】让学生借助已有的生活经验去寻找找次品的方法,进而引出用天平称的方法,这样的设计既顺应了学生的思维,又调动了学生的积极性。

  用直观的方式表达推理过程。

  师:同学们的推理过程很清晰,我们可以用直观图将这个过程表示出来。

  师:为了能清楚地表述,我们分别用数字卡片1、2、3代表这3瓶钙片。

  师:先把1、2放在天平的两边,会有几种情况呢?

  【学情预设】学生会说有两种情况,平衡或不平衡;也有学生可能会说,有三种情况:第一种平衡,第二种左边轻一些,第三种右边轻一些,此时教师引导学生归纳,不管哪边轻一些,都是不平衡。

  师:这两种情况,我们可以这样表示。[板书:]

  师:如果平衡,能得到什么结论?如果不平衡,又能得到什么结论?

  学生小组内交流后派代表发言。

  结合学生的发言,教师完善板书:

  师:同桌之间互相说说这个推理过程。

  (3)梳理过程。

  课件边呈现推理过程,学生边跟着一起说。

  师:需要称几次才能找出次品?(称1次就可以找到次品。)

  【设计意图】由简单的数据开始,让学生经历分析推理的过程,并掌握基本的思路和表达方法。

  3、自主探索从5瓶钙片中找出次品,理解“至少”“保证”的含义。

  (1)学生自主尝试。

  师:如果5瓶钙片中有一瓶是次品(次品轻一些),用天平至少称几次能保证找到次品?

  教学笔记

  【教学提示】

  从3瓶钙片中找出一瓶次品,相对比较简单,但其中的推理和表示方法很重要。所以一定要让每位同学都说清楚推理过程,掌握一定的表达方法。

  请同学们独立思考,用手中的扑克牌摆一摆,并将找次品的过程清楚地表示出来。完成的同学同桌间交流一下找的方法。

  师:能边说边将你找次品的过程在黑板上表示出来吗?

  【学情预设】有了前面从3瓶中找次品的经验,学生会用天平的形式来表示。学生会想出多种找出次品的方法,并将从5瓶钙片中找次品的过程展示出来:5(1,1,1,1,1);5(1,1,1,2);5(2,2,1);5(1,1,3)。但是由于要考虑到多种可能,有的学生可能会考虑不全面。

  预设1:分成3份。(2,2,1)

  称2次

  预设2:分成3份。(1,1,3)

  称2次

  预设3:分成5份再称。(1,1,1,1,1)

  预设4:分成4份再称。(1,1,1,2)

  (2)理解“至少”“保证”。

  师:这里有的时候1次就能找出次品,为什么至少要称2次呢?

  【学情预设】学生会说,1次是运气比较好,不能保证找出次品。

  师:同学们用不同的方法找出了5瓶钙片中的次品,老师看见这些方法的不同主要是因为一开始分的份数不同。如果每次画天平,都很麻烦,我们可以这样简洁表示。

  教师边说边板书:5(1,1,1,1,1)2次;5(1,1,1,2)2次;5(2,2,1)2次;5(1,1,3)2次。

  师:整体观察,应该怎么分保证能找到次品称的次数最少?至少应称几次?

  师:分的份数不同,但都是至少称2次就能保证找到次品,谁能解释这其中的`道理?

  【学情预设】面对这样的问题,可能有的学生在理解上会有些困难,教师要让学生说出自己的想法,如果学生实在无法解释,教师要引导学生继续去感受和理解:当天平左右两边各放1瓶钙片时,无论分成5份还是4份,天平外都是3瓶钙片,和5(1,1,3)这种情况是一样的,次品的位置同样只有两个托盘和天平外三个地方。

  【设计意图】呈现不同的解决策略,在多样的方法中找到共同的规律。加深对“至少”“保证”的理解。通过不同方法的交流、对比,让学生感受到解决问题的方法的多样性,初步感悟分成的份数与称的次数之间的关系。

  4、探索从8瓶钙片中找次品,掌握找次品的最优策略。

  课件出示教科书P112例2。

  师:同桌之间研究一下,看能不能也用刚才的符号或方法来解决,将探索情况填在记录单上,如果实在有困难的话也可以摆一摆。

  教学笔记

  【教学提示】

  学生的方法有很多,教学时要照顾到不同的方法,特别是错误的方法,要引导学生分析,错在哪里,为什么错,该如何更正。

  【学情预设】有了前面找次品的经验方法,学生会很自然地将之前的方法迁移过来,但不排除还有部分学生存在困难,所以教师提醒学生实在有困难的话也可以摆一摆,尽可能让每一位学生都能掌握基本的方法。

  师:哪个组来说说你们研究的情况?

  学生汇报,教师完善表格。

  师:现在我们静下心来,静静地观察表格并回顾刚才的研究过程,你能发现什么?

  师:师:从8个零件中找1个次品时很多同学都分成了3份,但只有分成3个、3个和2个时才能保证找出次品称的次数最少,结合表格中的数据,谁能分析一下?

  学生交流反馈。

  教师根据学生反馈板书:8(1,1,1,1,1,1,1,1)4次;8(2,2,2,2)3次;8(3,3,2)2次;8(4,4)3次。

  师:如果9瓶钙片中有1个是次品(次品轻一些),至少称几次能保证找到次品?是怎么称的?

  学生思考,小组交流。

  【学情预设】学生会发现将8瓶钙片分成3份,每份分别为3瓶、3瓶和2瓶时,保证找出次品称的次数最少。同样是分成三份,为什么这种分法保证找出次品称的次数最少呢?

  【设计意图】本环节是在学生动手操作的基础上,将学习的主动权继续交给学生,让学生将自己的研究成果展示在同伴面前。在学生汇报的过程中,可能又会有不同的意见出现:对于从8瓶中找一瓶次品时很多同学都分成了3份,但只有分成3瓶、3瓶和2瓶时,保证找出次品称的次数最少。这将会再次引发学生的二次研究,促使学生对研究成果不断进行修正。

  5、验证发现。

  师:用你发现的方法算一算,要找出10个、11个、12个零件中的1个次品(次品重一些),看看是不是平均分成3份保证找出次品称的次数也是最少的。

  学生独立验证并交流。

  师小结:经过研究、验证,我们发现,平均分成3份找次品,保证找到次品称的次数最少,不能平均分成3份的,要把余下的平均分到各组。

  师:回头想想,我们是用了哪些方法得出了这样的结论?

  【设计意图】学生只有在经历知识形成的过程中所掌握的知识和方法才是鲜活的、可迁移的,学生的数学素质才能得到质的飞跃。所以在本环节教师需要引导学生进行了数学学习方法的小结,让学生感受到结论的得出依托于数学学习方法,将这些学习方法也可以渗透到学生今后的数学学习中。

  三、实践应用,加深理解

  1、课件出示教科书P113“练习二十七”第1题。

  学生独立解答后小组内交流。

  2、课件出示教科书P112“做一做”。

  教学笔记

  【教学提示】在教学时,教师要设计问题,引导学生进行推理。

  学生独立完成,交流反馈。

  【学情预设】在学生掌握了基本方法后,很多学生直接运用规律,不进行推理。

  四、课堂小结

  师:同学们,这节课就要结束了。你今天学了些什么?

  师:学了今天的知识能帮我们解决什么问题呢?

  板书设计

  5(1,1,1,1,1,)2次8(1,1,1,1,1,1,1,1)4次

  5(1,1,1,2)2次8(2,2,2,2)3次

  5(2,2,1) 2次8(3,3,2) 2次

  5(1,1,3) 2次8(4,4)3次

  教学反思

  教学设计中,考虑到学生通过操作过程总结出方法比较困难,而从3瓶中找次品,称一次就可以找到,从8瓶中找次品数据相对又比较大,所以增加了从5瓶中找次品这个环节,分解难点,在较小数据中理解思路,掌握方法。所以到后来找8瓶中的次品时,直接填表格,学生相对比较容易接受。

  另外,从3瓶中找出1瓶次品,对于学生来说,得到这个结论不是很难。但是在表述时,因为出现了“如果……”,这个跟以前的单一性结论和过程有很大的区别的说法,所以学生在理解上还是有一定难度,特别是后面的从5瓶钙片中找出1瓶次品时,学生很难表述清楚,之后还需要加强学生的语言表达能力,帮他们理顺思路。

  找次品教学设计与反思 6

  《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的次品有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。

  新课程标准中指出:培养学生良好的数学思维能力是数学教学要达到的重要目标之一。因而新课标教材系统而有步骤地渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。通过教学使学生受到数学思想方法的熏陶,形成探索数学问题的兴趣与欲望,逐步发展数学思维能力。

  找次品的教学,旨在通过找次品渗透优化思想,让学生充分感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。本节课以找次品这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。

  学情分析

  解决问题的策略研究学生已经不是第一次接触,此前学习过的沏茶、田忌赛马、打电话等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。另外,本节课中会涉及到的 可能、一定、可能性的大小、分数的通分等知识点学生在此之前都已学过的。

  本节课学生的探究活动中要用到天平,在以往学习等式的性质等知识时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。

  新课程实施已有几年的时间,几年来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。

  教学目标

  知识技能目标:让学生初步认识找次品这类问题的基本解决手段和方法。

  过程方法目标:学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  情感态度价值观目标:感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  教学方法

  1.加强学生的试验、操作活动。本节课内容的活动性和操作性比较强,可以采取学生动手实践、小组讨论、探究的方式教学。先多给学生一些时间,让他们充分地操作、试验、讨论、研究,找到解决问题的多种策略。活动完成后再让学生分组汇报结果。

  2.重视培养学生的猜测、推理能力和探索精神。引导学生从纷繁复杂的方法中,从简化解题过程的角度,找出最优的解决策略。引导学生逐步脱离具体的实物操作,转而采用列表、画图等方式进行较为抽象的分析,实现从具体到抽象的过渡。

  教学过程

  课前谈话

  出示3瓶钙片,说明:在这3瓶钙片中有一瓶少装了几颗,你能帮我找出是哪一瓶少装了吗?

  学生自由发言。

  在同学们说的这些方法中,你认为哪一种方法最好?为什么?

  [设计意图:在这一环节中,要引导学生根据次品的特点发现用天平称的方法最好,知道并不需要称出每个物品的具体质量,而只要根据天平的平衡原理对托盘两边的物品进行比较就可以了。]

  出示天平。说说怎样利用天平来找出这瓶钙片呢?

  学生回答后小结:可以把其中的2瓶分别放在天平的两个托盘中,如果天平平衡则没放上去的那一瓶少装了;如果天平不平衡则翘起一端的托盘中所放的那一瓶少装了。

  揭示课题:在生活中常常有这样的情况,在一些看似完全相同的物品中混着一个质量不同(轻一点或是重一点)的物品,需要想办法把它找出来,像这一类问题我们把它叫做找次品,这节课我们就一起来研究如何利用天平找次品。板书课题:找次品

  [设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学例1前,先以3个待测物品为起点,降低了学生思考的难度,能较顺利地完成初步的逻辑推理:那就是并不需要把每个物品都放上去称,3个物品中把2个放到天平上,无论平衡还是不平衡,都能准确地判断出哪个是次品。只有理解了这些,后面的探究、推理活动才能顺利进行。]

  设疑:如果老师有2187瓶钙片,其中一瓶少了一颗,用天平几次保证能找到次品?请你猜一猜。

  找次品的解决方法

  小组合作:从5瓶钙片中找出少装了的那瓶次品。

  (合作要求:用手模拟天平,用5个学具当钙片。你们是怎样称的?称了几次?组长负责作好记录。)

  指名汇报,根据学生的回答同步用图示法板书学生的操作步骤:

  平衡:11次

  5(2,2,1)

  不平衡:2(1,1) 2次

  5(1,1,1,1,1) 1次或2次

  从这儿我们可以看出,用天平找次品的方法是多种多样的。

  [设计意图:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。但考虑到学生用天平来称在操作上会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,为了便于学生操作和节省时间,所以让学生用手模拟天平来进行实践探究。图示法较为抽象,对学生来说不容易理解,在这里只是让学生初步感知,教学时教师根据学生的回答同步板书,便于学生理解每项数据、每种符号的含义,为后面的学习打下一定的基础。]

  观察板书的图示法,思考:至少称几次就一定能找到这个次品呢?

  [设计意图:学生在实际的操作中,可能会出现提前找到次品的情况,如果运气好的话称1次就可能找到次品。在这里必须引导学生在理解至少称几次就一定能找到这个次品 的含义,在此基础上让学生明白:当我们选用一种方法来分析的研究问题时,应注意把可能出现的结果考虑全面,才能得出正确的结论。同时也为下面的填表、探究优化策略作好准备。]

  探索最优策略

  在9个零件中有一个次品(次品重一些),用天平称,至少称几次就一定能找到这个次品呢?

  小组分工合作:用学具摆一摆并尝试画图表示摆的过程,完成下表。

  (合作要求:2名同学摆学具,2名同学用图示法作记录,2名同学分析填表。)

  零件个数

  分成的份数

  每份的个数

  至少称几次就一定能找到这个次品

  [设计意图:这一环节是本节课的重点也是难点,必须进行小组活动,发挥集体的智慧才能突破这个难点。为了保证小组活动的有效性,活动前先在小组内进行分工,使每个成员都明确自己的任务。让学生摆学具而不再使用天平,并尝试用图示法记录操作过程,是完成由具体到抽象过渡中的重要一步。]

  指名汇报,根据学生的.回答填表并板书:

  平衡 3(1,1,1)

  9(3,3,3)

  不平衡3(1,1,1) 2次

  平衡1

  9(4,4,1) 平衡2(1,1) 3次

  不平衡4(1,1,2)

  不平衡1

  平衡1

  平衡(2,2,1)

  9(2,2,2,2,1) 不平衡2(1,1)3次

  不平衡2(1,1)

  9(1,1,1,1,1,1,1,1,1) 4次

  引导观察:用哪一种方法保证能找出次品需要称的次数最少?

  小结:平均分成3份去称,保证能找出次品所需的次数最少。

  [设计意图:小组汇报时将学生的操作过程用图示法板书,使学生进一步理解并初步掌握这种分析方法。待测物品数量为9个时,只有平均分成3份称才能保证2次就找到次品,其它任何一种分法都比2次要多,这样便于学生发现规律。]

  解决课始提出的问题,只需7次,让学生从强烈的对比中感受数学的魅力。

  不能平均分成3份的应该怎样分呢?

  全班合作:用图示法从10个和11个零件中找出一个次品。

  (合作要求:将全班所有的小组分成2部分,一部分小组分析从10个零件中找出一个次品,另一部分小组分析从11个零件中找出一个次品。小组内先共同讨论出几种不同的分法,再2人合作选一种(组内不重复)用图示法分析。)

  指名汇报,投影展示学生的分析过程。

  引导观察,感知规律:一是把待测物品分成三份;二是要分得尽量平均,能够均分的就平均分成3份,不能平均分的,也应该使多的一份与少的一份只相差1。

  [设计意图:设计待测物品数量为10个和11个,带领学生经历由特殊到一般的数学分析模式,在此基础上使学生比较全面地感知找次品这类问题的基本解决手段和方法。在这一环节中,让学生完全脱离具体的实物操作,实现从具体形象思维到抽象逻辑思维的过渡,但考虑到学生独立用图示法分析仍有难度,因而采用两个合作的方式进行。把学生分成2部分分别分析10个和11个,并要求小组内选方法时组内不重复,这样能提高探究的效率,在较短的时间内把几种情况都分析到。]

  你知道这是为什么吗?你能不能对这个规律作出解释?

  [设计意图:4-6年级学段目标中指出:在解决问题的过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明,能表达解决问题的过程,并尝试解释所得的结果。学生通过合作探索、归纳总结出了找次品的最优策略,解释这个规律能使学生对得出结论从感性认识上升为理性认识。要想用比较少的次数找到次品,那么每称一次都应该将次品锁定在一个尽可能小的范围内,因为天平有2个托盘,每称一次不但能对放上去的2份进行推理判断,还能对没放上去的1份进行推理判断,所以每称一次保证能锁定范围的最小值是待测物品的三分之一左右。]

  拓展提高

  猜测:这种方法在待测物品的数量更大时是否也成立呢?

  第135页做一做:

  有( )瓶水,除1瓶是盐水略重一些外,其他几瓶水质量相同。至少称几次能保证找出这瓶盐水?

  请你选择一个合适的数来解这道题,独立用图示法分析,验证你的猜测是否正确。

  [设计意图:本节课中提供的归纳方法在本质上是一种不完全归纳法,对数量更大时的情形是否适用,还需要通过试验来检验。先让学生进行猜测,引发学生进一步进行归纳、推理等数学思考活动,再将做一做进行适当的改编,设计成较为开放的问题,既能满足不同层次学生的需求,又可以用更多的数据对总结的规律进行验证。如果课堂时间不允许,这一环节也可以作为课堂的延伸让学生课后完成。]

  《找次品》教学反思

  著名的心理学家布鲁纳说过这样一句话:学习的最好刺激是对学习材料的兴趣。学生有了兴趣,学习活动对他们来说不是一种负担,而是一种享受、一种愉悦的体验。因此,上课开始,我首先拿出学生们喜欢的口香糖调动学生的兴趣,并与学生交流:老师这里有3瓶口香糖,要送给今天表现得最出色的同学,不过其中有一瓶已经被我吃过了两片,送给你们肯定不行,你能用什么办法把它找出来吗?随着学生的回答揭示本节课的教学内容找次品:在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,轻一点或是重一点,利用天平能够快速准确的把它找出来,我们把这类问题叫做找次品。

  从3瓶口香糖中找次品的方法是本节课的基础。在这一环节中,我让学生用手做天平的托盘,感知从3瓶口香糖中找次品,只要称一次就足够了。接着让学生用五个圆片代替5瓶口香糖,通过自己动手操作,体验从五件物品中找出一件次品的基本方法。随后,师生小结出方案。第一种方案:每份分一个,至少需要称两次就一定能找出来。第二种方案:有2份分2个,1份分1个,至少需要称两次就能找出来。

  然后通过从9个零件中找出一个轻一些的次品,归纳出找次品的最优方法。《数学课程标准》强调:教师是学习的组织者、引导者和合作者。教师的引导能让学生对学习的程序、方式、方法、策略等有更进一步的了解。所以,本环节我把主动权交给学生,让学生小组合作,在试验、研讨的过程中自主探索解决问题的最优方法。接下来,在学生汇报、交流时引导学生归纳出找次品的最优策略,一是把待测物品平均分成3份,这样次数最少。

  接着呼应课前的猜想,从9到27到81到243到729到2187,只需7次就能保证找到次品,学生从强烈的反差中感受到数学的魅力。

  为了知识体系的完整,我让学生继续自主分析8瓶的找法,当数字不能被平均分成3份时,怎样分更合理,从均分2份需3次,而分成3、3、2时只需2次,从而更加清楚均分3份的好处,及尽量均分3份的策略。但因时间仓促,过程太简单,效果受到影响。

  找次品教学设计与反思 7

  教学内容:

  人教版数学五年级下册第134-135页的内容。

  教学目标:

  1.让学生初步认识“找次品”这类问题的基本解决手段和方法。

  2.学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  教学重点:

  让学生初步认识“找次品”这类问题的基本解决手段和方法。体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  教学难点:

  观察归纳“找次品”这类问题的最优策略。

  教学过程:

  一、谈话引入昨天晚上老师买来三瓶糖,谁知有一瓶给我儿子偷吃了两颗。像这样的商品比标准的商品轻了些,我们就把这商品叫“次品”,这节课我们就作为小小质检员,一起想办法找出这些次品,好不好?(板书课题:找次品)

  二、初步探究(教学例1)

  1、自主探索。

  (1)刚才老师手上的.三瓶糖,其中有一瓶是次品,有什么办法帮忙将它找出来吗?

  生:用天平称来称。

  师:对,我们可以用天平称来帮忙找出次品。

  师:用天平称来称,至少要称多少次保证可以找出次品?

  (2)请同学上台演示操作过程。

  根据学生回答板书:3(1,1,1)1次

  小结:从三瓶里找出一瓶次品,至少要称多少次?(1次)

  2、设置悬念,激发欲望。

  如果不是三瓶,而是2187瓶,至少要称多少次才能保证找出来呢?

  (1)请同学们猜一猜,大胆说出猜想结果。

  (2)小结:看来大家的答案并不统一,接下来我们要好好研究这个问题,但是2187瓶数量太大了,我们先从简单的数量研究开始。先研究5瓶吧。

  3、组织探究

  出示例1,老师又拿来了两盒口香糖,一共是5瓶,你还能用天平称将那盒次品找出来吗?至少要称多少次?

  1、小组讨论:

  ①你把待测物品分成几份?每份是多少?

  ②假如天平平衡,次品在哪里?

  ③假如天平不平衡,次品又在哪里?

  ④至少称几次就一定能找出次品来?

  小组里互相讨论,小声说一说。

  2、学生一边演示,一边讲解操作过程。

  师据生回答板书:5(2,2,1)2次

  5(1,1,1,1,1)2次

  师:为什么不把5瓶分成2份,一份是2瓶,一份是3瓶呢?

  小结:用天平找次品时,操作过程,天平两边放的数量要相等,否则称了也是白称。

  三、拓展提高,优化方案(教学例2)

  谈话:5瓶研究过了,但是离我们的2187瓶还相差很远,接下来我们研究9瓶怎么样?

  1、明确题目要求。

  课件出示例2,有9口香糖,其中有一个是次品(次品轻一些),用天平称,至少称几次就一定能找出次品来?

  让生自己明确问题,并找出重点、关键的词语,并指出重点词语:次品轻、至少、一定保证。

  2、组织讨论。

  ①你把待测物品分成几份?每份是多少?

  ②假如天平平衡,次品在哪里?

  ③假如天平不平衡,次品又在哪里?

  然后让生说说方法,师据生回答完成表格:

  口香糖个数

  分成的份数

  保证能找出次品的次数

  9

  9(1,1,1,1,1,1,1,1,1)

  4次

  9

  9(2,2,2,2,1)2(1,1)

  3次

  9

  9(4,4,1)(2,2)(1,1)

  3次

  9

  3(3,3,3)3(1,1,1)

  2次

  3、观察分析,寻找规律。

  师:“为什么有些同学的次数是4次,有同学是2次,他的方法高明之处是什么?”

  师:“请同学们观察表格,你发现了什么”

  师“那这种方法我们分成几份?是怎么分的?”

  然后再让学生小组讨论:

  找次品的最好方法是怎样?

  把待测物品分成几份?

  据生回答出示:最好方是把待测物品平均分成三份。(板书)

  4、验证刚得到的策略:

  如果零件是12个,你认为怎样分最好?

  如果不是平均分,又是多少次呢?

  五、回顾课前的设疑:

  师:从2187瓶里找出次品,真要2186次吗?

  生:不用。

  师:要多少次呢?

  生:7次。

  师:原来7次就保证找到了次品。

  六、小结

  师全课小结:这节课我们主要是学了如何找次品,那找次品的最好方法是什么?

  找次品教学设计与反思 8

  教学内容

  教科书第111~114页的内容

  教学目标

  知识与能力:

  使学生通过操作、试验、讨论、研究,找到解决问题的多种策略。

  过程与方法:

  通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  情感、态度与价值观:

  感受数学在日常生活中的广泛应用,初步培养学生的应用意识和解决实际问题的能力。

  教学重点

  要求学生经历观察、猜测、试验、推理的思维过程,归纳解决问题的最优策略,促进学生养成勤于思考,勇于探索的精神。

  教学难点

  要求学生经历观察、猜测、试验、推理的思维过程,归纳解决问题的最优策略,促进学生养成勤于思考,勇于探索的精神。

  教具准备

  课件等。

  教学方法

  小组合作、交流的学习方法。

  教学课时

  1课时

  教学过程

  【情景导入】

  出示天平教具,提问:这是什么(天平)你知道天平的作用吗它的工作原理是什么

  【新课讲授】

  1、自主探索。

  (1)出示教材第111页例1:这里有3瓶钙片,其中有一瓶少了3片,你能用什么方法把它找出来吗

  (2)独立思考。老师鼓励学生大胆设想,积极发言。

  方案:打开瓶子数一数,用手掂掂,用天平称。(板书课题:找次品)

  2、自主探索用天平找次品的基本方法。

  (1)引导学生探索利用天平找次品的方法:大家猜猜,怎样利用天平找出这瓶少了的钙片,我们可以拿出3个学具,代替钙片,想象一下,怎样才能找出少了的那瓶

  (2)独立思考,有一定思维结果的时候小组交流。

  (3)全班汇报:

  ①一个一个地称重量(利用砝码),最轻的就是少了的那一瓶;

  ②利用推理:在天平两端各放一瓶,根据天平是否平衡来判断哪一瓶是少的。如果天平平衡,说明剩下的一瓶就是少的;如果天平不平衡,说明上扬的一端是少的。

  (4)小结并揭示课题。

  ①综合比较几种方法(数一数,掂一掂,盘秤称,天平称……),哪一种更加快速,准确

  ②在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,轻一点或是重一点。利用天平能够快速准确地把它找出来,我们把这类问题叫做找次品。

  3、如果这里有5瓶钙片,其中1瓶少了3片,请你设法把它找出来。

  4、学生思考,讨论,交流并汇报。

  汇报:

  (1)先拿两瓶放在天平两端,如果天平平衡,说明这两瓶都是合格的,再拿两瓶放在天平两端,如果天平还是平衡,说明这两瓶还是合格的,那剩下的一瓶就是不合格的。

  (2)先拿两瓶放在天平两端,如果天平两端平衡,说明这两瓶都是合格的,再拿两瓶放在天平两端,如果天平不平衡,说明上扬的一端就是不合格的'。

  (3)先把5瓶分成2瓶一组,在天平两端各放两瓶,如果天平平衡,说明这四瓶都是合格的,那剩下的一瓶就是不合格的。

  (4)先把5瓶分成2瓶一组,在天平两端各放两瓶,如果天平不平衡,说明上扬的一端就是不合格的,把上扬的那一端的两瓶再放在天平两端,天平上扬的一端就是不合格的。

  5、小结:

  第一种方案,每一份是1个,至少需要称2次就一定能找出来。

  第二种方案,每一份是2个,至少需要称2次就一定能找出来。

  【课堂作业】

  1、完成教材第112页“做一做”。学生在小组中讨论交流,共同完成。

  2、完成教材第113页练习二十七的第1~6题。

  答案:

  1、第5瓶

  2、(2)3次(3)能(4)有可能

  3、小明5岁,爸爸29岁。

  4、3次

  5、略

  6、能

  【课堂小结】

  这节课我们学习了找次品,通过这节课的学习,你的收获是什么

  【课后作业】

  完成练习册中本课时练习。

  【课后反思】

  本节课内容的活动性和操作性比较强,大都可以采取学生动手实践、小组讨论、探究的方式教学。实际教学时,可先多给学生一些时间,让他们充分地操作、试验、讨论、研究,找到解决问题的多种策略。在活动中出现的一些共性的问题,教师可集中解决,如有的学生在称的次数少于至少能保证找出次品的次数时,就找出了次品,这时教师应提醒学生把所有的可能性都考虑进去。活动完成后,教师可要求学生分组汇报结果,并在黑板或屏幕上一一展示,让学生感受到同一问题却有多种解决方案,同时也为后面寻求最优的解决策略打下了研究、分析的基础。

  组织学生进行实验操作活动,仅仅是本单元教学内容的基础或前奏,教学的重点在于活动后的猜测、归纳、推理活动,由此促进学生养成勤于思考、勇于探索的精神。操作活动中,学生往往会得出多种解题策略。教学时,老师应引导学生从这些纷繁复杂的方法中,从简化解题过程的角度,找出最优的解决策略。实际教学时,教师可先让学生观察各种解决策略,引导学生发现把待测物品平均分成3份称的方法最好,在此基础上,就可让学生进行猜测:这种方法在待测物品的数量更大时是否也成立呢从而可引发学生进一步进行归纳、推理等数学思考活动。教师可引导学生逐步脱离具体的实物操作,转而采用列表、画图等方式进行较为抽象的分析,实现从具体到抽象的过渡。

  找次品教学设计与反思 9

  教学目标:

  1、通过观察、猜测、操作、画图、推理与合作交流验证等学习方法,探究找次品的策略,归纳出解决这类问题的最优策略。

  2、通过讨论、探究、逻辑推理等活动,寻找次品的优化方法,解决身边的数学问题,感受数学在日常生活中的广泛应用,经历数学方法从具体到抽象、从特殊到一般的提炼过程,初步培养学生的应用数学的意识和解决实际问题的能力。

  教学重点:经历观察、猜测、判断、推理的思维过程,归纳出解决问题的最优策略。

  教学难点:体会解决问题有多种策略,通过解决实际问题,初步学会运用最优化的方法解决问题。

  教具准备:瓶装口香糖、课件

  教学设计:

  一、情境导入,感受新知

  1、课件出示影音资料:1986年1月28日,美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。据调查,这次灾难的主要原因是一个不合格的零件(橡皮圈)引起的。可见,不合格零件的危害有多大。

  2、你从播放的影片中看到了什么?

  3、飞机失事有可能是什么原因造成的?

  这节课我们就来研究如何找出不合格产品,也就是找次品。

  板书:找次品。

  二、学用天平,了解原理

  1、老师这里有5瓶口香糖,其中一盒少了几颗,但是我不知道是哪一瓶?请同学们帮帮老师好吗?你有什么办法把它找出来?

  2、你们都很聪明,老师听了你们的建议决定用天平来找次品。那你们会用天平吗?

  3、怎样用天平来找次品?谁能边演示边把找次品的过程说给大家听?(师板书)

  小结我们用天平找次品时,不管我们把零件分成几份,天平一次能称几份?

  三、归纳策略,体会最优

  如果老师这里不是5瓶,而是有9瓶口香糖中有一瓶我多放了几颗(比其它几瓶重一些),你至少需要几次就能保证找出这瓶?

  1、现在我们不用天平了,用画图一步一步地分析、推理,请同桌的.合作学习。

  课件演示:

  课件出示:

  零件个数分的份数每份各几个保证能找到次品的次数

  9 9 1,1,1,1,1,1,1,1,1 4

  9 5 2,2,2,2,1 3

  9 3 3,3,3 2

  9 3 4,4,1 3

  2、请同学们仔细观察这表,你有什么发现?你喜欢那种称法?

  用天平来找次品我们把待分物品分成3份,尽量平均分这种方法最好。

  板书:分成3份,尽量平均分最好

  四、应用策略,拓展提高

  你们通过实验、讨论找到了解决问题的最优方法。孙悟空和猪八戒也来凑热闹了。孙悟空把手上的珍珠递给猪八戒说:八戒,这13颗珍珠中有一颗要轻些,是我用猴毛变的。如果你能用最少的次数保证能找出假珍珠,这12颗珍珠就归你了。猪八戒抓破脑袋也没有想出办法。我们能用学到的知识帮帮八戒,好吗?

  五、课堂回顾,知识延伸

  1、通过这节课你学会了什么?

  2、这节课我们研究的是总数可以平均分成3份的这一类找次品问题,当然在生活中有些次品不止一个,不知是较轻还是较重;总数里可能有也可能没有等等。如果感兴趣的同学,课后可以再去研究研究。

  板书:

  找次品

  用天平称分成3份平均分--最优

  找次品教学设计与反思 10

  一、教学目标

  (一)知识与技能

  利用天平,结合观察、猜测、图示、推理等活动,理解“找次品”问题的基本原理,发现解决这类问题的最优策略。

  (二)过程与方法

  以“找次品”活动为载体,经历由多样到优化的思维过程,培养学生的优化意识。

  (三)情感态度和价值观

  感受数学在日常生活中的广泛应用,发展学生的应用意识和解决实际问题的能力。

  二、教学重难点

  教学重点:探究解决“找次品”问题的最优策略。

  教学难点:用图示或文字表示找次品的过程。

  三、教学准备

  天平,多媒体课件。

  四、教学过程

  (一)创设情境,引入原理

  1.情境导入,揭示课题。

  (1)课件出示例1:有3瓶钙片,其中一瓶少了3片。你能设法把它找出来吗?

  (2)理解题意。

  学生可能会说:倒出来数一数,或掂一掂、称一称……

  教师根据学生的回答解释:生产或生活中有时需要从几个物体中找特别重或特别轻的一个,在数学中我们把这类问题称为“找次品”问题。

  如果两个物体的差异很大、很明显,可以用数一数或掂一掂的方法。如果差异不明显或物体数量很多(例如有30瓶钙片),用数一数或掂一掂的方法可能不准确或不方便,此时可以用天平帮助我们快速找到“次品”。

  【设计意图】理解问题是分析问题和解决问题的前提,当学生面对例1,首先想到的肯定是数一数或掂一掂,因为他们缺少使用天平的生活经验,所以让他们了解“数”和“掂”的局限性是非常有必要的。

  2.合情推理,理解原理。

  (1)了解天平的使用方法。

  教师出示天平,并让学生想象:如果在天平的左边放一支粉笔,在天平的右边放一本数学书,天平会怎么样?为什么?

  学生回答:天平的左边高,右边低。因为数学书比粉笔重。

  教师继续追问:如果在天平的左边放一本数学书,在天平的右边也放一本数学书,现在天平会怎么样?为什么?

  学生回答:天平会平衡,因为左右两边一样重!

  教师根据学生的回答,在课件中出示:天平平衡,两边一样重;天平不平,下沉那边重。

  【设计意图】学生没有使用天平的经验,教师引导学生通过想象和观察丰富表象扫除学习障碍,为进一步学习找次品做好准备。特别地,对两种情况的概括有利于学生探究找次品的方法。

  (2)如何利用天平找次品?

  如果只有两瓶钙片,放在天平上称一次就知道哪一瓶少了3片,因为它会轻一点。现在有3瓶,那么要称几次呢?为什么?

  学生:称一次。左右两边各放1瓶,如果天平平衡,剩下的.那瓶就是次品;如果天平不平衡,天平翘起的一端所放的是次品。

  教师分别演示天平达到平衡和出现不平衡的两种情况,请同学进行判断并说明理由。

  【设计意图】根据天平的情况推断出剩下一瓶的情况,是解决“找次品”问题的关键。此处将实验演示和语言表达结合起来,帮助学生理解原理。

  3.交流图示,掌握方法。

  你能想办法把用天平找次品的过程,清楚地表示出来吗?

  (1)可以用一个“△”加一条短横线表示天平,用长方形表示钙片。

  (2)为了方便,还可以给每瓶钙片加上编号。

  学生完成后,将作品通过实物投影仪进行展示交流。

  【设计意图】图示是对问题进行抽象、概括的一种方式,通过图示使找次品的方法具有概括性,同时也可以培养学生的抽象思维能力。在例1教学后及时进行方法的总结,可以分散本课的难点,有利于学生发现解决“找次品”问题的最优策略。

  (二)探索规律,优化策略

  理解题意。

  (1)课件出示例2。

  8个零件里有1个是次品(次品重一些)。假如用天平称,至少称几次能保证找出次品?

  (2)大胆猜测。

  教师:至少称几次能保证找出次品?

  学生:如果运气好一次就能找到次品,所以至少一次。

  学生:一次不能保证找出次品,因为如果运气不好,就找不到次品了。

  学生:每次称2个零件,4次保证找出次品。

  教师:“至少称几次能保证找出次品”是什么意思?

  学生:既要保证找出次品,又要次数最少。

  【设计意图】这个讨论是非常必要的,学生第一次遇到这类问题,可能不能兼顾两端,说“一次”的同学忽视了“保证”,说“4次”的同学没有考虑到至少。通过同学间的互相交流,否定错误,澄清认识,确定研究方向,在探究、解决问题的过程中不走错路,少走弯路,有利于课堂教学目标的实现。

【找次品教学设计与反思】相关文章:

找次品教学设计05-08

《找次品》教学设计(通用16篇)06-01

找规律教学设计及反思(精选14篇)04-21

鸭妈妈找蛋教学设计与反思04-03

六年级课文《找次品》教学反思(通用18篇)06-14

找规律教学设计01-31

《找规律》教学设计05-10

《找春天》教学设计05-29

找春天的教学设计10-18

《找骆驼》教学反思12-01