教学设计

初中数学教学设计与反思

时间:2024-10-30 10:32:01 晓凤 教学设计 我要投稿
  • 相关推荐

初中数学教学设计与反思(精选11篇)

  在当今社会生活中,课堂教学是我们的工作之一,反思自己,必须要让自己抽身出来看事件或者场景,看一段历程当中的自己。如何把反思做到重点突出呢?下面是小编为大家整理的初中数学教学设计与反思,欢迎阅读,希望大家能够喜欢。

初中数学教学设计与反思(精选11篇)

  初中数学教学设计与反思 1

  教材分析:

  一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。

  学情分析:

  1.学生已学习用求根公式法解一元二次方程。

  2.本课的教学对象是九年级学生,学生对事物的认

  识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。

  3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。

  教学目标:

  1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

  2、能力目标:通过韦达定理的`教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。

  3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。

  教学重难点:

  1、重点:一元二次方程根与系数的关系。

  2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

  教学过程:

  一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2= ,x1x2= 。

  问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?

  ①二次项系数a是否为零,决定着方程是否为二次方程;

  ②当a≠0时,b=0,a、c异号,方程两根互为相反数;

  ③当a≠0时,△=b-4ac可判定根的情况;

  ④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。

  ⑤当a≠0,c=0时,方程必有一根为0。

  教学反思:

  1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。

  2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力

  3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。

  4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。

  初中数学教学设计与反思 2

  一、教学目标:

  1、知道一次函数与正比例函数的定义.

  2、理解掌握一次函数的图象的特征和相关的性质;

  3、弄清一次函数与正比例函数的区别与联系.

  4、掌握直线的平移法则简单应用.

  5、能应用本章的基础知识熟练地解决数学问题。

  二、教学重、难点:

  重点:初步构建比较系统的函数知识体系。

  难点:对直线的平移法则的理解,体会数形结合思想。

  三、教学过程:

  1、一次函数与正比例函数的定义:

  一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数

  正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

  2. 一次函数与正比例函数的区别与联系:

  (1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

  (2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx

  平行的一条直线。

  基础训练:

  1. 写出一个图象经过点(1,- 3)的函数解析式为: 。

  2.直线y = - 2X - 2 不经过第 象限,y随x的增大而。

  3.如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。

  4.已知正比例函数 y =(3k-1)x,若y随

  x的增大而增大,则k是: 。

  5、过点(0,2)且与直线y=3x平行的直线是: 。

  6、若正比例函数y =(1-2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是: 。

  7、若y-2与x-2成正比例,当x=-2时,y=4,则x= 时,y = -4。

  8、直线y=- 5x+b与直线y=x-3都交y轴上同一点,则b的值为 。

  9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。

  (1)求线段AB的长。

  (2)求直线AC的解析式。

  四、教学反思:

  教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。

  课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问题的.答案做出来,尽量要一题多解。再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。台上他们是主角,台下他们也是主角。

  从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。

  初中数学教学设计与反思 3

  一、教材分析

  反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。

  二、学情分析

  由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

  三、教学目标

  知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.

  解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.

  四、教学重难点

  重点:理解反比例函数意义,确定反比例函数的表达式.

  难点:反比例函数表达式的确立.

  五、教学过程

  (1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;

  (2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化。

  请同学们写出上述函数的表达式y= tx

  k可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx

  v=是自变量,y是函数。

  此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。

  当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。

  此过程的.目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)

  已知y与x成反比例,则可设y与x的函数关系式为y=k x=1

  k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

  例:已知y与x2反比例,并且当x=3时y=4

  (1)求出y和x之间的函数解析式

  (2)求当x=1.5时y的值

  解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业

  通过此环节,加深对本节课所内容的认识,以达到巩固的目的。

  六、评价与反思

  本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。

  初中数学教学设计与反思 4

  一、教材分析

  本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

  二、教学目标

  1、知识目标:了解多边形内角和公式。

  2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

  3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

  4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

  三、教学重、难点

  重点:探索多边形内角和。

  难点:探索多边形内角和时,如何把多边形转化成三角形。

  四、教学方法:

  引导发现法、讨论法

  五、教具、学具

  教具:多媒体课件

  学具:三角板、量角器

  六、教学媒体:

  大屏幕、实物投影

  七、教学过程:

  (一)创设情境,设疑激思

  师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?

  活动一:探究四边形内角和。

  在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

  方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。

  方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。

  接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

  师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

  活动二:探究五边形、六边形、十边形的内角和。

  学生先独立思考每个问题再分组讨论。

  关注:

  (1)学生能否类比四边形的方式解决问题得出正确的结论。

  (2)学生能否采用不同的方法。

  学生分组讨论后进行交流(五边形的内角和)

  方法1:把五边形分成三个三角形,3个180的`和是540。

  方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。

  方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。

  方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。

  师:你真聪明!做到了学以致用。

  交流后,学生运用几何画板演示并验证得到的方法。

  得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。

  (二)引申思考,培养创新

  师:通过前面的讨论,你能知道多边形内角和吗?

  活动三:探究任意多边形的内角和公式。

  思考:

  (1)多边形内角和与三角形内角和的关系?

  (2)多边形的边数与内角和的关系?

  (3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

  学生结合思考题进行讨论,并把讨论后的结果进行交流。

  发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。

  发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

  得出结论:多边形内角和公式:(n-2)·180。

  (三)实际应用,优势互补

  1、口答:

  (1)七边形内角和()

  (2)九边形内角和()

  (3)十边形内角和()

  2、抢答:

  (1)一个多边形的内角和等于1260,它是几边形?

  (2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。

  3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?

  (四)概括存储

  学生自己归纳总结:

  1、多边形内角和公式

  2、运用转化思想解决数学问题

  3、用数形结合的思想解决问题

  (五)作业:

  练习册第93页1、2、3

  八、教学反思:

  1、教的转变

  本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

  2、学的转变

  学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

  3、课堂氛围的转变

  整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

  初中数学教学设计与反思 5

  一、教材分析:

  本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章 第3节 平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分.

  二、教学目标:

  知识与技能:掌握平行线的性质,能应用性质解决相关问题.

  数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程.

  解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神.

  情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的.热情和勇于探索、锲而不舍的精神.

  三、教学重、难点:

  重点:平行线的性质

  难点:“性质1”的探究过程

  四、教学方法:

  “引导发现法”与“动像探索法”

  五、教具、学具:

  教具:多媒体课件

  学具:三角板、量角器.

  六、教学媒体:

  大屏幕、实物投影

  七、教学过程:

  (一)创设情境,设疑激思:

  1.播放一组幻灯片.内容:

  ①火车行驶在铁轨上;

  ②游泳池;

  ③横格纸.

  2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

  学生活动:

  思考回答.

  ①同位角相等两直线平行;

  ②内错角相等两直线平行;

  ③同旁内角互补两直线平行;

  教师:首先肯定学生的回答,然后提出问题.

  问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?

  引出课题——平行线的性质.

  (二)数形结合,探究性质

  1.画图探究,归纳猜想

  任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图).

  问题一:指出图中的同位角,并度量这些角,把结果填入下表:

  第一组

  第二组

  第三组

  第四组

  同位角

  ∠1

  ∠5

  角的度数

  数量关系

  学生活动:画图——度量——填表——猜想

  结论:两直线平行,同位角相等.

  问题二:再画出一条截线d,看你的猜想结论是否仍然成立?

  学生:探究、讨论,最后得出结论:仍然成立.

  2.教师用《几何画板》课件验证猜想

  3.性质1.两条直线被第三条直线所截,同位角相等.(两直线平行,同位角相等)

  (三)引申思考,培养创新

  问题三:请判断内错角、同旁内角各有什么关系?

  学生活动:独立探究——小组讨论——成果展示.

  教师活动:引导学生说理.

  因为a‖b 因为a‖b

  所以∠1=∠2 所以∠1=∠2

  又 ∠1=∠3 又 ∠1+∠4=180°

  所以∠2=∠3 所以∠2+∠4=180°

  语言叙述:

  性质2 两条直线被第三条直线所截,内错角相等.

  (两直线平行,内错角相等)

  性质3 两条直线被第三条直线所截,同旁内角互补.

  (两直线平行,同旁内角互补)

  (四)实际应用,优势互补

  1.(抢答)

  (1)如图,平行线AB、CD被直线AE所截

  ①若∠1 = 110°,则∠2 = °.理由:.

  ②若∠1 = 110°,则∠3 = °.理由:.

  ③若∠1 = 110°,则∠4 = °.理由:.

  (2)如图,由AB‖CD,可得( )

  (A)∠1=∠2 (B)∠2=∠3

  (C)∠1=∠4 (D)∠3=∠4

  (3)如图,AB‖CD‖EF,

  那么∠BAC+∠ACE+∠CEF=( )

  (A) 180°(B)270° (C)360° (D)540°

  (4)谁问谁答:如图,直线a‖b,

  如:∠1=54°时,∠2= .

  学生提问,并找出回答问题的同学.

  2.(讨论解答)

  如图是一块梯形铁片的残余部分,量得∠A=100°,

  ∠B=115°,求梯形另外两角分别是多少度?

  (五)概括存储(小结)

  1.平行线的性质1、2、3;

  2.用“运动”的观点观察数学问题;

  3.用数形结合的方法来解决问题.

  (六)作业 第69页 2、4、7.

  八、教学反思:

  ①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者.在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣.

  ②学的转变:学生的角色从学会转变为会学.本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境.

  ③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值.

  初中数学教学设计与反思 6

<title>  垂线</title>

  教材分析

  《垂线》选自义务教育课程标准实验教科书《数学》(华东师大版)七年级上册第四章相交线。垂线是平面几何所要研究的基本内容之一,是七年级上册第四章“图形的初步认识”的主要内容。垂线的概念、画法和性质是重要的基础知识,是进一步学习空间里的垂直关系、三角形的高、切线的性质和判定以及平面直角坐标系等知识的基础,与其他数学知识一样,它在现实生活中有着广泛的应用。垂线的概念和性质,蕴含着“从一般到特殊”的认识规律,是培养学生思维能力的重要内容之一。它作为学习几何的基础内容,对以后学生利用准确合理的构造画出垂线来分析几何关系、解决几何综合问题及相关实际问题具有重要意义。

  实验教材将本节内容分两课时,与九年义务教育教材相比,虽然缩短了一课时,但更注重对学生实际操作能力的培养,更注重渗透变换的思想。“做一做”这种探究性活动,为培养学生的参与意识和创新意识提供了机会。垂线的画法是学生学习本节内容的一个难点。结合学生所学的知识及生活实际,有效地引导学生认知和感受知识的发生发展过程;精心设计投影片和变式训练,并恰到好处地利用运动变化,体现画垂线的思维过程,在掌握垂线概念的基础上,使学生顺利自然地突破画垂线的难点。

  学生分析

  我校属农村城镇中学,学生全部享受九年义务教育,实行电脑随机分班,未进行筛选。学生智力水平参差不齐,基础和发展均不平衡。经过一学期的实践,学生基本上适应了以学习小组方式参与探究活动与班级学习方式相结合的学习方法,不同程度地享受到了数学知识来源于实践操作的成功体验,从而愿意在教师的指导下主动与同学探索、发现、归纳数学知识。

  设计理念

  针对教材内容和学生实际,组织学生实践、感悟出两直线互相垂直的概念,引导学生分析解决问题,使学生在自己动手的基础上,发现垂线的性质,又借助于教具、实物、图形、幻灯等,从直观的感性认识发现抽象的概念,使学生成为探求知识的主体。同时利用问题探究式的方法让学生对新课加以巩固理解。在探究垂线的性质时,采取小组学习形式,可增强学生之间的合作互助,弥补教师在大班额教学中对弱势学生关注的不足。初步探索在农村中学中如何进行研究性学习。

  教学自标

  1.了解两条直线互相垂直的概念;知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线。

  2.培养提高观察、理解能力,几何语言能力,画图能力,抽象思维能力和运用知识解决实际问题的能力。

  3.培养辩证唯物主义思想及不断发现、探索新知识的精神。

  4.通过创设情境,利用变式训练和多种教学手段来激发学生学习兴趣,给学生创造成功的机会,使他们爱学、会学、学会,营造学生可持续发展的氛围。

  教学重点:

  两直线互相垂直的有关性质。

  教学难点:

  过直线上(外)一点作已知直线的垂线。

  【学习目标是从基础知识教学、基本技能训练、数学能力培养和德育目标四个方面,依据《数学课程标准》关于“垂线”的具体教学要成和各种教学原则,以及本节的教材内容与学生的实际确定的。】

  课前准备

  课前准备教具:多媒体、投影仪、自制的可旋转的两根木条等。

  生活经验准备:旗杆与旗台边线线的垂直关系;红十字会标志。

  以往知识准备:两条直线相交,产生两对对顶角,且对顶角相等。

  教学流程

  一、创设问题情境。

  师:这是两幅草坪的图案。在绿色的草坪上,画着两条交叉的道路。你觉得甲图、乙图哪一幅更漂亮、更匀称?这是什么原因?(教师用多媒体或投影仪展示。)

  (学生众说纷纭,教师应给予充分的肯定。)

  师:图甲是两条直线相交的一种特殊情况,它在生活、生产实际中应用比较广。请你再举一些类似的例子。

  生:……

  师:让我们共同探索图甲这种特殊情况。

  【借助于教具、模型、实物、图形及幻灯等教学手段,使学生先得到直观的感性认识,培养学生从感性到理性的认知方式。】

  二、回顾再现。

  对顶角相等两条直线相交只有一个交点。如图1,直线AB和CD相交,交点为点O,有四个小于平角的角,且。

  三、提高。

  教师演示自制教具,要求学生观察当一根木条绕着另一根木条旋转时的变化情况,并用数学语言进行描述。

  【教师应鼓励学生大胆描述自己的观察结果,并及时予以肯定。】

  师:两直线相交,有两组分别相等的角,当一个角等于90°时,其他三个角有什么变化?可能产生四个相等的角吗?如图2,同时演示教具,将直线CD绕着点O旋转,当时,是多少度?

  生:……

  师:你们的依据是什么?

  生:……

  (学生的答案很丰富:用度量的方法;利用对顶角相等;互补的概念……学生回答过程中,只要有道理就应予以鼓励。)

  【这里希望在感性认识的基础上进行抽象概念的教学,培养学生的抽象思维能力。】

  四、提升。

  教师引导学生归纳出:两条直线互相垂直,两条直线相交所构成的四个角中有一个角是直角时,称这两条直线互相垂直。

  师:(1)如图2,直线AB和CD相交,交点为O,记为,垂足为点O。“ ”读作“AB垂直于CD”或“CD垂直于AB”。

  (2)两条直线,垂足为点O,则。

  【实现数学的三大语言。文字语言、符号语言和几何语言之间的切换,并板书,以突出其重要性。】

  五、再探究。

  师:请同学们举一些日常生活中互相垂直的直线的例子;

  生:……

  【希望实现将数学知识在实际生活中的运用,并为后继学习数学知识增加感性认知。】

  师:请同学们用三角尺或量角器:

  (1)经过直线 AB 外一点 P ,画直线与已知直线 AB 垂直,且讨论这样的直线有几条。

  (2)设这一点在直线 AB 上,重作上述过程。

  【学生分组或独立探索,教师巡视指导。】

  教师引导学生归纳结论:在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

  【通过学生动手操作画图,教师在巡视中及时指出、纠正学生发生的错误,训练学生以严谨的科学态度研究问题、解决问题。】

  师:请同学们互相交流且简单描述一下,上述结论用三角尺的作法过程和“有且只有”的含义。

  (学生讨论交流,教师巡视)

  教师引导归纳出:

  (1)靠已知直线...找待过定点...画已知直线的垂线(一靠、二过、三垂直)。

  (2)有一条并且只有一条,没有第二条。

  师:如图5,请同学们相互比试,谁能更快地过直线CD上一点P作直线AB的垂线。并在小组间进行交流。

  【探究性活动是《数学课程标准》的一个重要举措,并为培养学生的创新意识提供了一些机会。“做一做”进行小组交流,一方面是为了加强对学生动手操作能力的培养,同时也培养了学生的合作意识和竞争意识,使学生更深入理解垂直、垂线的概念。】

  六、学生探索。

  学生分小组测量,讨论,归纳。如图6所示,点A与直线DC上各点的距离长短一样吗?谁最短?它具备什么条件?(抽小组代表发言。)

  七、总结归纳。

  教师总结归纳:只有线段AB最短,且当AB与DC垂直时,才最短。

  教师引导学生得出线段AB特征:A为直线外一点,B为过A向直线DC所引的垂线的垂足,

  提高:线段AB的长度就是点A到直线DC的距离。

  思考:点A到直线DC的距离与点A到点C的距离有什么区别?

  点A到直线DC的`距离:线段AB的长度,A为直线外一点,B为过A向直线DC所引的垂线的垂足;点A到点C的距离:两点之间线段的长度。

  【从生活实际.从学生感兴趣、熟悉的问题引导学生发现里线的第二个性质,提高学生学数学的兴趣,并适当体现学数学??用数学??发现教学的思想。】

  八、较量(练习)。

  1.第170页第1、2、3题。

  2.应用。

  【带有竞争性质的练习使学生在相互竞争中,在实践中应用本节课的知识,分享获取成功的喜悦,并促进学生形成积极向上的心理品质。】

  (1)某村庄在如图7所示的小河边,为解决村庄供水问题,需把河中的水引到村庄A处,在河岸CD的什么地方开沟,才能使沟最短?画出图来,并说明道理。

  (2)教材第170页“做一做”。

  (3)体育课上怎样测量跳远成绩。

  【学以致用,学生做个小小设计师.兴趣盎然,把这节课引入高潮。】

  学生重温“两条直线互相垂直的概念”和“如何过已知直线上或已知直线外的一点作惟一的垂线”两个知识点。

  3.第174页第1、2题。

  4.学校的位置如图8所示,请设计出学校到两条公路的最短距离的方案,并在图上标出来,并说明理由。

  课后反思

  1.本节课主要采用了“问题探究式”的教学方法,鼓励学生去发现、分析并解决问题,使学生在自己动手的基础上,发现垂线的性质,又借助于教具、实物、图形、幻灯等,从直观的感性认识中发现抽象的概念,使他们成为探求知识的主体,同时还利用学生较量形式让他们对学习内容加以巩固理解。并设计了变式训练习题和开放性习题,来帮助学生逐步树立转化的思想和发展性思维,这对提高学生的能力是非常重要的。学生是课堂的主人,教师从引导学生设疑??感知??概括??应用的每一个环节,注意学生的积极参与、积极思维,使学生从被动的学习到主动探索和发现的转化中感受到学习与探索的乐趣,适合七年级学生的认知心理。

  2.本节课采用不同的反馈手段和反馈练习。

  (1)设计变式习题、图形、开放性习题。每次较量主要解决一个重点问题,同时使教师及时了解学生对数学知识的掌握情况,及时发现问题并及时矫正,扫清后续学习的障碍。

  (2)较量方法。如:笔答、口答、板演、快速抢答等,以增加反馈层面。通过练习较量使大多数学生的学习情况都能及时反馈给教师,使教师心中有数。

  (3)及时矫正。对每次较量情况进行小组评定和教师点评,对学生中的创新解答及时给予肯定。创造了轻松、愉悦的学习环境。

  3.但笔者根据上述设计进行教学后,认为“点到直线的距离”放在这里,值得商榷。这是因为:

  (1)此部分内容与小学距离过大。在小学学习中,对于“点到直线的距离”,学生仅通过一些特殊图形有了一点感性认识,并未上升到点到线的距离的高度。

  (2)在本节内容教学中,让学生参与实践、体验,其难度较大。其理由是:本节教学内容量大;设计了较多的动手实践活动;作为学生课后实践探索的习题,如能充分利用学生资源(如与家长、同伴),在实际生活中交流、感悟,收效会更好。

  初中数学教学设计与反思 7

  【教学目标】

  1进一步认识方程及其解的概念。

  2理解一元一次方程的概念,会根据简单数量关系列一元一次方程。

  3体验用尝试、检验解一元一次方程的思想与方法。

  【教学重点】

  一元一次方程的概念和解法贯穿整章,因此“一元一次方程的概念”与“尝试检验法”求解是本节教学的重点。

  【教学难点】

  用尝试、检验的方法解一元一次方程的过程比较复杂,是本节教学的难点。

  【学习准备】

  1.下面哪些式子是方程?

  (1)3

  (2)1;

  (2)x31;

  (3)3x5;

  (4)2xy4;

  (5)x31;

  (6)3x14.

  2.方程与等式有什么联系与区别?

  方程是解决实际问题的一个重要数学模型,需要我们进一步学习研究。

  【课本导学】

  思考一阅读并解答课本第114页“合作学习”的三个问题,思考:

  1.列方程就是根据问题中的相等关系,写出含有未知数的等式。

  (1)原价为50元的衣服,按8折销售,售价是多少元?原价若为x元呢?

  (2)你能举例说明你对“物体在水下,水深每增加10米,物体承受的压力就增加

  (3)张明投进x个,那么“小杰投进的球的个数”可以怎样表示?“3人一共投进的球数”怎样表示?

  你是怎么理解“三人平均每人投进14个球”这句话的?

  思考二观察你所列的方程,这些方程之间有哪些共同的特点?请思考:

  1.你可以从哪些角度对这些方程进行观察呢?说说你的想法。

  2.具有“合作学习”中所列方程一样特点的方程叫做一元一次方程,你能说说这个名称中“元”和“次”的含义吗?[练习]完成课本第115页课内练习

  1.『归纳』判断一个方程是不是一元一次方程应抓住哪几个关键特点?

  思考三阅读课本第114页倒数3行至第115页正文结束,并思考下面的问题:

  1.(1)如果一个数是方程有什么关系?

  (2)如果一个数是方程350应该是多少?

  (3)要判断一个数是不是方程3m?2?1?m的解,你会怎么做?2.对方程2x12

  14的解,这个数代入方程的左边计算得到的值与14 3 1

  x500的解,这个数代入方程的左边计算得到的值10 2x12

  14进行尝试求解时,你认为x必须是整数吗

  x可以取21吗20呢?x可以取10或者比10还小的值吗?为什么?说说你的想法。

  [练习]完成课本第115页课内练习

  2.『归纳』1.检验一个数是不是一元一次方程的解的步骤有哪些?

  2.用尝试检验的方法解一元一次方程,你觉得关键的步骤有哪些?【盘点收获】

  【学习检测】

  1.下列说法正确的是()

  (a)x1是等式(b)x1是方程(c)方程是等式(d)等式是方程

  2.下列式子中,属于一元一次方程的是()(a)5x 1

  (b)ab8(c)1257(d)5x82x9 3

  3.设某数为x,根据下列条件列出求该数的方程:

  (1)某数加上1,再乘以2,得6.

  (2)某数与7的和的2倍等于10.

  (3)某数的5倍比某数小3.

  4.某校初一年级328名师生乘车外出春游,己有2辆校车可乘坐64人,还需租用44座的客车多少辆?

  设还需租用x辆,则可列出方程44x+64=328.

  (1)写出一个方程,使它的解是

  2.【作业布置】略

  【课后反思】

  课堂教学总是在“预设”与“生成”间交融进行,如何根据学情做好充分的`预设,又根据课堂生成灵活应变,这既能反映教师的专业素养,又能展示教师的教学功底.反刍本课,笔者认为还有以下几方面值得反思与改进:

  1.忽略课堂“火花”,错失追问良机

  在交流对方程的共同特征探讨的环节,有一个同学直接说出了“一元一次方程”的名称.【片断实录】

  师:讨论好了吧.哪个小组先来说说你们所归纳的特点.生8:这些等式都含有未知数的,用x或y来表示.师(板书):嗯,都含有未知数,这个未知数呢,有的地方是x,有的地方是y.还有呢?生8:还有黑板上的所有等式都是一元一次方程.

  师(惊喜):嗯,你都知道了所有的等式都是我们今天接下来要具体研究的一元一次方程,这位同学已经预习了呢.我们看,刚才这位同学归纳了:都含有未知数.那么请同学们看得更仔细一点,未知数在这里具有什么特征呢?

  不难看出,笔者在这里没有很好地抓住学生的课堂即时生成资源,用一句“嗯,……,这位同学已经预习了呢.”轻轻带过,仍然拉着学生回到了预设的轨道“……,请同学们看得更仔细一点,未知数在这里具有什么特征呢?”如果当时直接问她“那么请你讲讲什

  初中数学教学设计与反思 8

  教材分析

  立体图形的翻折问题是高二《代数》(下)中立体几何的一个学习内容,它融会贯通于各种立体几何和几何体中,对学生进一步理解立体图形起着至关重要的作用。立体图形的翻折是从学生生活周围熟悉的物体入手,使学生进一步认识立体图形于平面图形的关系;不仅要让学生了解几何体可由平面图形折叠而成,更重要的是让学生通过观察、思考和自己动手操作、经历和体验图形的变化过程,使学生了解研究立体图形的方法。

  教学重点

  了解平面图形于折叠后的立体图形之间的关系,找到变化过程中的不变量。

  教学难点

  转化思想的运用及发散思维的培养。

  学生分析

  学生在前面已经对一些简单几何体有了一定的认识,对于求解空间角及空间距离已具备了一定的能力,并且在班级中已初步形成合作交流,敢于探索与实践的良好习惯。学生间相互评价、相互提问的互动的气氛较浓。

  设计理念

  根据教育课程改革的具体目标,结合“注重开放与生成,构建充满生命活力的课堂教学运行体系”的要求,改变课程过于注重知识传授的倾向,强调形成积极生动的学习态度,关注学生的学习兴趣和经验,实施开放式教学,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成、发展与变化。

  教学目标

  1、使学生掌握翻折问题的解题方法,并会初步应用。

  2、培养学生的'动手实践能力。在实践过程中,使学生提高对立体图形的分析能力,并在设疑的同时培养学生的发散思维。

  3、通过平面图形与折叠后的立体图形的对比,向学生渗透事物间的变化与联系观点,在解题过程中,使学生理解,将立体图形中的问题化归到平面图形中去解决的转化思想。

  教学流程

  一、创设问题情境,引导学生观察、设想、导入课题。

  1、如图(图略),是一个正方体的展开图,在原正方体中,有下列命题

  (1)AB与EF所在直线平行

  (2)AB与CD所在直线异面

  (3)MN与EF所在直线成60度

  (4)MN与CD所在直线互相垂直其中正确命题的序号是

  2、引入课题----翻折

  二、学生通过直观感知、操作确认等实践活动,加强对图形的认识和感受(引导学生在解题的过程中如何突破难点,从而体现在平面图形中求解一些不变量对于解空间问题的重要性)。

  1、给学生一个展示自我的空间和舞台,让学生自己讲解。教师根据学生的讲解进一步提出问题。

  (1)线段AE与EF的夹角为什么不是60度呢?

  (2)AE与FG所成角呢?

  (3)AE与GC所成角呢?

  (4)在此正四棱柱上若有一小虫从A点爬到C点最短路径是什么?经过各面呢?

  (通过对发散问题的提出培养学生的培养精神及转化的教学思想方法,让学生体会折叠图与展开图的不同应用。)

  2、让学生观察电脑演示折叠过程后,再亲自动手折叠,针对问题做出回答。

  (1)E、F分别处于G1G2、G2G3的什么位置?

  (2)选择哪种摆放方式更利于求解体积呢?

  (3)如何求G点到面PEF的距离呢?

  (4)PG与面PEF所成角呢?

  (5)面GEF与面PEF所成角呢?

  (学生会发现这几个问题可在同一个直角三角形中找到答案,然后让学生在折纸中找到这个三角形的位置,既而发现折叠过程中的不变量。)

  3、演示MN的运动过程,让学生观察分析解题过程强调证PN垂直AB的困难性。与学生共同品位解出这道2002高考题的喜悦的同时,引导学生用上题的思路能否更快捷地解出此题呢?

  (学生大胆想象,并通过模型制作确认想象结果的正确性,从而开辟一条简捷的翻折思想解题思路。)

  三、小结

  1、画平面图,并折前图与折后图中的字母尽量保持一致。

  2、寻找立体图形中的不变量到平面图形中求解是关键。

  3、注意培养转化思想和发散思维。

  (通过提问方式引导学生小结本节主要知识及学习活动,养成学习、总结、学习的良好学习习惯,发散自我评价的作用,培养学生的语言表达能力。)

  四、课外活动

  1、完成课上未解决的问题。

  2、对与1题折成正三棱柱结果会怎样?对于2题改变E、F两点位置剪成正三棱柱呢?

  (通过课外活动学习本节知识内容,培养学生的发散思维。)

  课后反思

  本课设计中,有梯度性的先安排三个小题,让学生经历先动手、思考、预习这一学习过程,然后在课堂上给学生一个充分展示自我的空间,并且适时发问的同时帮助学生找到解决方法。归纳总结解翻折问题的技巧和作为解题方法的优越性。在实施开放式教学的过程中,注重引导学生在课堂活动过程中感悟知识的生成、发展与变化,培养学生主动探索、敢于实践、善于发现的科学精神以及合作交流的精神和创新意识,将创新的教材、创新的教法与创新的课堂环境有机地结合起来,将学生自主学习与创新意识的培养落到实处。

  初中数学教学设计与反思 9

  一、主题分析与设计

  本节课是苏科版义务教育课程标准实验教科书七年级数学(下册)第七章第2节内容——探索平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是"空间与图形"的重要组成部分。

  《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以"生活·数学"、"活动·思考"、"表达·应用"为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

  二、教学目标

  1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。

  2、数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。初中数学教育叙事

  3、解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

  4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。

  三、教学重、难点

  1、重点:对平行线性质的掌握与应用

  2、难点:对平行线性质1的探究

  四、教学用具

  1、教具:多媒体平台及多媒体课件

  2、学具:三角尺、量角器、剪刀

  五、教学过程

  (一)创设情境,设疑激思

  1、播放一组幻灯片。

  内容:

  ①供火车行驶的铁轨上;

  ②游泳池中的泳道隔栏;

  ③横格纸中的线。

  2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

  3、学生活动:针对问题,学生思考后回答——

  ①同位角相等两直线平行;

  ②内错角相等两直线平行;

  ③同旁内角互补两直线平行;

  4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2探索平行线的性质(板书)

  (二)数形结合,探究性质

  1、画图探究,归纳猜想

  教师提要求,学生实践操作:任意画出两条平行线(a ∥ b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)

  教师提出研究性问题一:

  指出图中的同位角,并度量这些角,把结果填入下表:

  教师提出研究性问题二:

  将画出图中的同位角任先一组剪下后叠合。

  学生活动一:画图————度量————填表————猜想

  学生活动二:画图————剪图————叠合

  让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。

  教师提出研究性问题三:

  再画出一条截线d,看你的猜想结论是否仍然成立?

  学生活动:探究、按小组讨论,最后得出结论:仍然成立。

  2、教师用《几何画板》课件验证猜想,让学生直观感受猜想

  3、教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)

  (三)引申思考,培养创新

  教师提出研究性问题四:

  请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?

  学生活动:独立探究————小组讨论————成果展示。

  教师活动:评价学生的研究成果,并引导学生说理

  因为a ∥ b(已知)

  所以∠ 1= ∠ 2(两直线平行,同位角相等)

  又∠ 1= ∠ 3(对顶角相等)

  ∠ 1+ ∠ 4=180°(邻补角的定义)

  所以∠ 2= ∠ 3(等量代换)

  ∠ 2+ ∠ 4=180°(等量代换)

  教师展示:

  平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)

  平行线性质2:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)

  (四)实际应用,优势互补

  1、(抢答)课本P13练一练1、2及习题7.2 1、5

  2、(讨论解答)课本P13习题7.2 2、3、4

  (五)课堂总结:这节课你有哪些收获?

  1、学生总结:平行线的性质1、2、3

  2、教师补充总结:

  ⑴用"运动"的`观点观察数学问题;(如我们前面将同位角剪下叠合后分析问题)

  ⑵用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)

  ⑶用准确的语言来表达问题;(如平行线的性质1、2、3的表述)

  ⑷用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)

  (六)作业

  学习与评价P5 1、2、3(填空);4、5、6(选择);7、8(拓展与延伸)

  六、教学反思:

  数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为"过程"不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得"情感、态度、价值观"方面的体验。这节课的教学实现了三个方面的转变:

  ①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生"教"你他们活动的过程和通过活动所得的知识或方法。

  ②学的转变:学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地"学"数学,而是深入地"做"数学。

  ③课堂氛围的转变:整节课以"流畅、开放、合作、‘隐导"为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以"对话"、"讨论"为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

  总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧

  初中数学教学设计与反思 10

<title>  从不同方向看</title>

  一、教学目标

  知识与技能目标

  1.初步了解作函数图象的一般步骤;

  2.能熟练作出一次函数的图象,掌握一次函数及其图象的简单性质;

  3.初步了解函数表达式与图象之间的关系。

  过程与方法目标

  经历作图过程中由一般到特殊方法的转变过程,让学生体会研究问题的基本方法。

  情感与态度目标

  1.在作图的过程中,体会数学的美;

  2.经历作图过程,培养学生尊重科学,实事求是的作风。

  二、教材分析

  本节课是在学习了一次函数解析式的基础上,从图象这个角度对一次函数进行近一步的研究。教材先介绍了作函数图象的一般方法:列表、描点、连线法,再进一步总结出作一次函数图象的特殊方法。两点连线法。结合一次函数的图象,教材以议一议的方式,引导学生探索函数解析式与图象二者间的关系,为进一步学习图象及性质奠定了基础。

  教学重点:了解作函数图象的一般步骤,会熟练作出一次函数图象。

  教学难点:一次函数及图象之间的对应关系。

  三、学情分析

  函数的图象的概念及作法对学生而言都是较为陌生的。教材从作函数图象的一般步骤开始介绍,得出一次函数图象是条直线。在此基础上介绍用两点连线得一次函数的图象,学生就容易接受了。在函数解析式与图象二者之间的探讨这部分内容上,不要作更高要求,学生能回答书中的问题就可以了。教学中尽可能的多作几个一次函数的图象,让学生直观感受到一次函数的图象是条直线。

  四、教学流程

  一、复习引入

  下图是小红某天内体温变化情况的曲线图。你知道这幅图是怎样作出来的吗?把每个时间与其对应的体温分别作为点的横坐标和纵坐标,在直角坐标系中描出这些点,这样就可以作出这个图象。

  二、新课讲解

  把一个函数的自变量和对应的因变量的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

  下面我们来作一次函数y = x+1的图象

  分析:根据定义,需要在直角坐标系中描出许多点,因此我们应先计算这些点的横、纵坐标,即x与对应的y的值。我们可借助一个表格来列出每一对x,y的值。因为一次函数的自变量X可以取一切实数,所以X一般在0附近取值。

  解:列表:

  描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。

  连线:把这些点依次连接起来,得到y = x+1图象(如图)它是一条直线。

  三、做一做

  (1)仿照上例,作出一次函数y= ?2x+5的图象。

  师:回顾刚才的作图过程,经历了几个步骤?

  生:经历了列表、描点、连线这三个步骤。

  师:回答得很好。作函数图象的一般步骤是列表、描点、连线。今后我们可以用这个方法去作出更多函数的图象。

  师:从刚才同学们作出的一次函数的图象中我们可以观察到一次函数图象是一条直线。

  (2)在所作的图象上取几个点,找出它们的横、纵坐标,验证它们是否都满足关系:y= ?2x+5

  四、议一议

  (1)满足关系式y= ?2x+5的x 、 y所对应的点(x,y)都在一次函数y= ?2x+5的图象上吗?

  (2)一次函数y= ?2x+5的图象上的点(x,y)都满足关系式y= ?2x+5吗?

  (3)一次函数y=kx+b的图象有什么特点?

  一次函数y=kx+b的图象是一条直线,因此作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了。一次函数y=kx+b的图象也称为直线y=kx+b

  例1做出下列函数的图象

  点评:作一次函数图象时,通常选取的两点比较特殊,即为一次函数和X轴、 y轴的交点,在列表计算时,分别令X=0,y=0就可计算出这两点的.坐标。正比例函数当X=0时,y=0,即与x 、 y铀的交点重合于原点。因此做正比例函数的图象时,只需再任取一点,过它与坐标原点作一条直线即可得到正比例函数的图象。从而正比例函数y=kx的图象是经过原点(0,0)的一条直线。

  练一练:作出下列函数的图象:

  (1)y= ?5x+2,???? (2)y= ?x

  (3)y=2x?1,(4)y=5x

  五、课堂小结

  这节课我们学习了一次函数的图象。一次函数的图象是一条直线,正比例函数的图象是经过原点的一条直线。在作图时,只需确定直线上两点的位置,就可得到一次函数的图象。一般地,作函数图象的三个步骤是:列表、描点、连线。

  六、课后练习

  随堂练习习题6.3

  五、教学反思

  本节课主要介绍作函数图象的一般方法,通过对一次函数图象的认识,得到作一次函数及正比例函数的图象的特殊方法(两点确定一条直线)。让学生能够迅速找到直线与坐标轴的交点,这是本节课的难点。数形结合,找准这两个特殊点坐标的特点(x=0或y=0),让学生理解的记忆才能收到较好的效果。

  初中数学教学设计与反思 11

  教学目标:

  1、了解什么是比例,能够正确地表示比例关系。

  2、掌握比例的性质,能够灵活地运用比例的性质进行解题。

  3、通过练习,提高解决实际问题的能力。

  教学重点:

  1、比例的概念及表示方法。

  2、比例的性质。

  3、比例的应用。

  教学难点:

  1、比例的应用。

  2、解决实际问题的能力。

  教学过程:

  一、引入(5分钟)

  1、教师出示一张比例图,让学生猜测比例的含义。

  2、学生回答后,教师讲解比例的概念及表示方法。

  二、讲解(15分钟)

  1、教师讲解比例的性质。

  2、教师通过例题让学生掌握比例的应用。

  三、练习(30分钟)

  1、教师出示一些比例题目,让学生在课堂上完成。

  2、学生完成后,教师讲解答案及解题方法。

  四、巩固(10分钟)

  1、教师出示一些实际问题,让学生运用比例的知识进行解决。

  2、学生完成后,教师讲解答案及解题方法。

  五、作业(5分钟)

  1、教师布置相关作业。

  2、学生完成后,交给教师批改。

  教学反思:

  通过本节课的教学,学生们对比例的`概念及表示方法有了更深入的了解,掌握了比例的性质,并通过练习提高了解决实际问题的能力。但是,教学过程中还存在一些问题,比如有些学生对比例的应用还不够熟练,需要加强练习。因此,下一节课需要针对这些问题进行更加深入的讲解和练习。

【初中数学教学设计与反思】相关文章:

初中数学教学设计12-16

最新初中数学教学设计精选03-31

初中数学教学设计范文11-08

初中数学教学设计意图07-25

初中数学教学反思优秀03-08

初中数学的教学反思总结11-23

初中数学教学设计(精选19篇)06-02

小学数学教学设计与反思(通用18篇)08-29

《数学编码》教学设计及反思(通用10篇)11-24