教学设计

六年级比例教学设计

时间:2024-07-15 14:31:04 教学设计 我要投稿

六年级比例教学设计(通用10篇)

  作为一名教学工作者,常常要写一份优秀的教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。一份好的教学设计是什么样子的呢?下面是小编整理的六年级比例教学设计,仅供参考,大家一起来看看吧。

六年级比例教学设计(通用10篇)

  六年级比例教学设计 1

  教学目标:

  一、知识与技能

  1、使学生理解比例的意义和基本性质,会解比例

  2、使学生理解正、反比例的意义,能够正确判断成正、反比例的量,会运用比例知识解决有关的实际问题。

  3、使学生能够运用比例知识,求出平面图的比例尺以及根据比例尺求图上距离和实际距离。

  4、能理解图形放大与缩小的原理,并能把简单的图形进行放大与缩小。

  二、过程与方法

  1、经历探索两个量的变化情况的过程,理解并掌握正比例和反比例的意义。

  2、能从比例知识的角度提出问题,理解问题,并能运用比例知识解决问题,发展学生的应用意识,发展学生的实践能力。

  3、学会与人合作,并能与他人交流思维的过程和结果

  三、情感、态度与价值观

  1、使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

  2、体验数学活动充满着探索与创造

  3、形成实事求是的态度以及进行质疑和独立思考的习惯

  教学重点:比例的意义和正、反比例的意义

  教学难点:正确判断正、反比例

  教学关键:理解正、反比例意义,认真分析两个量的变化情况

  比例的意义

  教学目的

  使学生理解比例的意义,能应用比例的意义判断两个比能否成比例

  教学重难点

  比例的意义

  找出相等的比组成比例

  正确计算比的比值

  教学过程

  一、学前准备

  什么是比?

  (1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简

  300:5=60:1

  (2)小明身高1.2米,小红身高1.4米,写出小明与小红身高的比

  1.2:1.4=12:14=6:7

  2、求下列各比的比值

  12:16 3/4:1/8

  二、探索新知

  教学(例1)

  (1)看课文的情境图

  (2)你知道这些国旗的长和宽各是多少吗?

  (3)测量教室国旗长和宽各多少?

  (4)教室这面国旗的长和宽的比值是多少?

  (5)操场上的国旗的长和宽的比值是多不和?与这面国旗有什么关系?

  (6)什么是比例?

  (7)找比例:在这四面国旗的尺寸中,你还能找出哪些可以组成比例?

  三、练习

  1、练习六的'1~3题

  2、全班交流

  教学反思

  通过本次的教学,总体感觉自己整节课的教学流程清晰,对本节课的两个重点突破较好,学生基本理解了比例的意义,能正确地读写比例,并且能根据比例的意义正确地写出比例。大部分学生学会了应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。练习设计为帮助学生理解、掌握本课的教学任务起到了巩固作用。

  但本节课也存在着一些不足之处:(1)整节课一味担心自己的教学任务不能完成,对学生放手不够,有牵着学生走的嫌疑。(2)教师讲解太过仔细,以至拓展练习无法完成。在今后的教学中将加大“放手”力度,多注意培养学生创新思维;语言力争言简意赅,把更过的时间还给学生探究问题,和独立解决问题。

  六年级比例教学设计 2

  教学目的

  1、使学生进一步理解比例的意义,懂得比例各部分名称

  2、经历探索比例基本性质的过程,理解并掌握比例的基本性质

  3、能运用比例的基本性质判断两个比能否组成比例

  教学重难点

  比例的基本性质

  发现并概括出比例的基本性质

  引导观察比列中内、外项的关系

  教学过程

  一、学前准备

  1、什么叫比例?

  2、判断下面的比能否组成比例?

  0.5:0.25和0.2:0.4

  1/5:1/2和5:2

  3/4:5/8和5/8:3/4

  二、探索新知

  1、教师说明组成比例的四个数的名称

  (1)学生认一认比例中的外项和内项

  2、比例的基本性质

  你能发现比例的外项和内项有什么关系吗?

  学生独立探索其中规律

  与同学交流你的发现

  汇报你的发现,班上交流

  归纳比例的基本性质

  三、练习

  1、完成练习六的4~6题

  2、班上交流

  教学反思

  上了本课,自以为准备比较充分,于是把本应分为两课时的内容在一节课内完成了。最直接的后果是没有充分地进行比例的基本性质的运用练习。

  一方面,由于课堂是时间比较紧迫,另一方面,我选择了教材练习6中的一些习题让学生做,大部分学生都能比较顺利地完成。因此我也没有发觉有多大的问题。

  但是,批改作业本的时候,我却发现了很多问题。比如习题2是“根据比例的基本性质,把下列各比例改写成乘法等式。”有不少学生把“3.2:4=4:5”改写成“3.2×11=4×”,显然是把除法转换成了乘法,而不是根据题目要求运用比例的基本性质:45

  外项之积等于内项之积。其余几小题也如法炮制。这样做的学生还不在少数,没有看清题目要求是原因之一,更为主要的.是对比例的基本性质不熟悉。最后责任还是在课堂上没有足够的时间供学生通过练习来理解、掌握比例的基本性质。由于比例的基本性质这一课没有过关,自然也影响到了后面的解比例。本来学生对解含有分数的方程就比较容易混淆,什么时候该乘,什么时候该除,一部分学生也没有十足的把握。现在再加上很多学生将比例与从比例转化得到的乘法算式混淆,以及内项、外项如何相乘的问题也容易混淆,所以更加增加了解比例的难度。

  六年级比例教学设计 3

  教学目的

  1、使学生进一步掌握比例的基本性质,学会应用比例的基本性质解比例

  2、能综合运用比例知识解决有关的实际问题

  教学重难点

  1、解比例

  2、解比例的方法

  3、运用比例的基本性质

  教学过程

  一、复习

  1、什么叫做比例?比例的基本性质?

  2填空:3:8=15:( )。你是怎么填出后项的

  二、导入:

  如果把3:8=15:( )写成3:8=15:X你能解出这个比例吗?

  教师板书课题:解比例

  三、探索新知

  1、什么叫解比例?

  (1)比例中只有几个项?有什么关系?

  (2)说明什么叫做解比例

  2、教学(例2)

  (1)出示例题和情境图

  (2)根据题意,描述两个相等的比

  (3)指出其中的未知项,说一说你想怎样解答

  (4)独立思考,解决问题

  (5)汇报解答情况

  3、教学(例3)

  (1)独立解出未知项

  (2)同桌相互交流

  (3)请学生板演

  4、完成课本中的“做一做”

  5、小结:解比例的.关键是什么?

  教学反思

  这节课实际上是一节比例基本性质的应用课。在解比例中,要先根据比例的基本性质把含有未知项的比例式改写成方程,再运用解方程的方法解比例。在把含有未知项的比例式改写成方程时,要注意外项(或内项)乘积等于内项(外项)乘积的运用,不能用错。所以,在学习《比例的意义和基本性质》一课时,一定要让学生熟练掌握比例的基本性质。

  六年级比例教学设计 4

  教学目的

  1、使学生理解正比例的意义,会正确判断成正比例的量。

  2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关的简单问题 教学重难点

  1、正比例意义

  2、正确判断两个量是否成正比例关系

  3、认真分析两个相关联的量的变化情况

  教学过程

  一、揭示课题

  1、师:在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你能举出一些简单的例子吗?

  2、这种变化的量有什么规律?存在什么关系呢?今天我们首先学习成正比例的.量。

  3、板书课题:

  二、探索新知

  一)、教学(例1)

  1、出示例1的情境图问:

  你看到了什么?

  2、出示表格问:

  你有什么发现?

  3、说明正比例的意义

  4、学生读一读,说一说你是怎样理解正比例关系的?

  5、用字母表示:y/x=k(一定)

  6、想一想:生活中还有哪些成正比例的量?

  二)、教学(例2)

  1、出示表格

  2、依据表中的数据描点

  3、从图中你发现了什么?

  三、练习

  1、练习七的1~5题

  2、班上交流思考过程

  六年级比例教学设计 5

  学情分析

  正比例数是学生第第一次涉及到一个具体的函数的学习和研究,也是初中数学中的一种简单最基本的函数,为后面学习一次函数打下基础,根据学生基础和知识层次制定不同的要求,提倡同伴间互相合作,充分遵循学生的认知规律,教学中注意由易到难、循序渐进,让每个学生获得成功的喜悦。

  教学目标

  知识与技能:能作正比例函数的图象,能掌握、运用正比例函数的性质;过程与方法:通过作正比例函数图象的过程,发展学生的观察、概括、归纳的能力,感知数形结合的数学思想;情感态度与价值观:通过描点作图题培养学生认真的学习习惯。

  教学重点:

  正比例函数的图象特征和性质。教学难点:正比例函数的图象特征和性质的概括和归纳。

  教学过程:

  一、回顾旧知、提出问题

  问题1昨天我们初步学习了正比例函数,你能写出两个具体的正比例函数解析式吗?什么叫正比例函数?(学生随便写出两个正比例函数解析式,如y=2x、y=-2x等。回顾正比例函数概念,开放性地先让学生写出几个简单的正比例函数解析式,既是为了帮助学生回顾正比例函数的概念,也是为了后面研究函数性质提供画图象的具体函数。)

  问题2函数都有哪几种表示方法?(教师引导学生说出表格法和图像法。为激发学生学习本节课的兴趣做好铺垫。)

  问题3针对函数y=kx(k≠0),大家还想研究什么?应该怎样研究?(教师引导学生自然合理地提出要研究的问题――研究函数图象,研究步骤:列表、描点、连线。通过回顾,引导学生自然合理地提出正比例函数图象的研究任务和研究方法。)

  二、合作交流,探究k>0的函数性质

  问题4让我们从具体的正比例函数y=2x的图象研究开始,画图象怎样画?

  (在学生说出画图象的步骤后,教师ppt演示。学生对刚接触画图象,为避免学生因在列表、连线等细节上出现错误,教师示范,为后续学生独立作图提高准确性。)

  追问1:看一看,画出的图象是什么?追问2:其他的正比例函数图象也是一条直线吗?请三人小组分工,分别取k为1、3、4,每人在练习纸上画一幅正比例函数图象。(类比y=2x的图象画法,做出函数图象。让学生画图象,观察、发现图象可能是直线。)

  问题5请组内讨论交流,你们的图象有什么共同点?(教师深入组内倾听学生的发言,发现学生的盲点和误区,给予指导。实物投影展示组内的三幅图象,各组互相补充发言,引导学生逐步完善共同点,得出k>0的正比例函数性质,是一条经过原点的直线,经过一三象限,从左到右直线上升,y随x的增大而增大。互相合作,共同进步,注重因材施教,充分遵循学生的认知规律,从而逐步突破本节难点。)

  问题6同学们通过合作学习,已经找到了k>0时的正比例函数性质了,同学们还想探究什么?追问1:怎么探究?(引导学生类比学习,组内分工,分别取k为-1、-3、-4,每人在练习纸上画一幅正比例函数图象,寻找共同点,得出k

  三、初步应用,巩固新知

  1.在平面直角坐标系中,正比例函数y=kx(k

  2.对于正比例函数y=kx,当x增大时,y随x的增大而增大,则k的取值范围()

  A.k0 D.k≥0

  3.点(2,y1),(4,y2)为y=-3x图象上的两点,请比较y1、y2的大小。(引导学生说出三种做法,提高学生对性质灵活运用的能力)

  四、综合应用,深化理解

  1.同学们刚才都找了组内图象的共同点,再看看这些直线有什么不同点吗?追问1:看看直线的`倾斜程度与什么有关?有什么变化规律?组内讨论交流。(引导学生说出直线的倾斜程度不同,发现k的绝对值越大,直线的倾斜程度越小,动画演示。乘胜追击,适时拔高本节内容,让同学们再进行一次攀登,培养学生多角度的观察、比较能力。)

  追问2:你还有什么发现吗?(引导有能力的学生得出,当k互为相反数时,两个函数图象分别关于x、y轴对称。为能力较强的同学提供一个更高的高度。)

  2.我们知道y=2x的图象是一条经过坐标原点的直线,你有画这幅函数图象的简便画法了吗?正比例函数y=kx(k=0)的图象是____,它一定经过(0,)和(1,)点。你如何画下列函数图象(1)y=x(2)y=-0.5x。

  五、小结

  参照下面问题,教师引导学生回顾本节课所学的主要内容,通过相互交流分享观点:(1)正比例函数的图象是什么?怎样用简便方法画正比例函数图象?

  (2)正比例函数有哪些性质?

  (3)我们是怎样对正比例函数的性质进行研究的?

  教师在学生交流的基础上概况。正比例函数解析式:y=kx(k是常数,k≠0)图象:一条经过原点和(1,k)的直线;性质:当k>0时,直线y=kx经过第一、三象限;当k0时,从左向右上升,即随x的增大y而增大;当k

  六年级比例教学设计 6

  教学过程:

  一、 创设情境,导入新课:

  同学们,我们近段时间学了些什么知识?那么就请同学们运用正比例、反比例的意义来判断(课件出示判断题)

  1、判断下面每题中的两种量成什么比例关系?

  (1)单价一定,总价和数量、

  (2)每小时耕地的公顷数一定,耕地的总公顷数和时间、

  (3)全校学生做操,每行站的人数和站的行数、

  2、 说说速度、时间和路程这三个量存在怎样的比例关系?

  (当速度一定)

  二、探究新知:

  1、 导入新课:刚才同学们说得很好,说明前面所学的知识掌握得不错,这节课学习怎样应用比例知识来解决生活中的实际问题。

  板书课题:比例的应用

  2、学习例1.(课件出示例题 )

  例1、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时、甲乙两地之间的公路长多少千米?

  (1) 先读题,想想:这种题型我们以前学过没有,属于哪类应用题?该怎样解答?再让学生在草稿上独立解答,然后指名说说解答方法。

  (2)引导学生探究用比例知识解答。

  提问:这道题能不能用比例知识来解答呢?

  (课件出示问题,让学生思考)

  1、这道题中涉及哪三种量?(路程、时间和速度)

  2、哪种量是一定的?你是怎样知道的?(照这样的速度就是说速度一定)

  3、行驶的路程和时间成什么比例关系?(行驶的路程和时间成正比例关系)(指名说说思考过程)

  (课件出示思考的过程,并齐读)

  (3) 提问: 根据正比例的意义可以列出怎样的比例?

  (教师根据学生的回答板书)

  (4) 解这个比例。 (教师板书解答过程)

  (5) 怎样检验所求的答案是否正确?(把求出的未知数代入原方程 ,看等式是否相等)

  (6)写出答语。

  (7) 练习:现在我们来看看,如果把例1的条件和问题改成下面的题,该怎样解答?(课件出示练习题)

  一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?

  (8)学生解答后,指名说说和例1的解法有什么相同?(题中两种量成正比例的关系没有变,解答的方法也没有变,只是所设的未知数为小时数)。

  (9)教师说明:例1和练习题都是根据正比例的意义列出的比例式,也是方程。

  3、学习例2:

  (课件出示例题)

  (1)自主探究用比例知识解答

  1、合作交流,小组讨论:

  题中有哪几种量? 这几种量之间有什么关系?根据比例的知识可以列出怎样的方程?

  2、汇报讨论结果。

  老师板书方程并提问: 这个方程是比例吗?为什么?

  3、师生一起解答。(完成例2的板书)

  4、练习:(课件出示练习题)

  一辆汽车从甲地开往乙地,每小时行驶70千米,5小时到达。如果每小时行驶87.5千米,需要多少小时到达?

  (学生独立完成后,指名说说解答方法与例2的异同:题中两种量成反比例的`关系没变,解答方法也没变,只是所设未知数为小时数。)

  5、 比较例1和例2的异同:(相同的是都是用比例解答的,不同的是例1是根据正比例的意义列出的比例式,例2是根据反比例的意义列出的等式。但它们都是方程。) 你能从例1、例2的解答中找出用比例的方法解答应用题的关键是什么吗?

  6、教师小结。

  (课件出示)通过例1、例2的解答,让同学们归纳出:(用比例方法解答应用题的关键是:先正确地找出题中两种相关联的量,判断它们成什么比例关系,然后根据正、反比例的意义列出方程。)

  三、知识应用:(出示课件做一做)

  1、食堂买来三桶油用780元,照这样计算,买8桶油要用多少钱?

  2、某种型号的钢滚球,3个重22.5克。现有一些这种型号的滚球,共重945克,一共有多少个?

  四、作业:

  练习中的1~4题。

  五、课堂小结:

  比例知识在日常生活中的应用非常广泛,比如要测量一颗大树的高度,或是一根旗杆的高度,都可以用比例知识来解决。我们以后再去探讨好不好?

  六年级比例教学设计 7

  【教学目标】

  1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

  2、培养学生概括能力和分析判断能力。

  3、培养学生用发展变化的观点来分析问题的能力。

  【教学重难点】

  重点:

  成正比例的量的特征及其断方法。

  难点:

  理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。

  【教学过程】

  一、四顾旧知,复习铺垫

  商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?

  学生独立完成后师提问:你们是怎样比较的?

  生:我先求出每种袜子的单价,再进行比较。

  师:你是根据哪个数量关系式进行计算的?

  生:因为总价=单价×数量,所以单价=总价÷数量。

  师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。(板书:正比例)

  二、引导探索,学习新知

  1、教学例1,学习正比例的意义。

  (1)结合情境图,观察表中的'数据,认识两种相关联的量。师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?学生自学并在组内交流。全班交流。

  (2)认识相关联的量。明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。

  2、计算表中的数据,理解正比例的意义。

  (1)计算相应的总价与数量的比值,看看有什么规律。学生计算后汇报:===…=3、5,每一组数据的比值一定。

  (2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)

  (3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。

  (4)明确成正比例的量及正比例关系的意义。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:

  3、列举并讨论成正比例的量。

  (1)生活中还有哪些成正比例的量?预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。

  (2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?

  两种量中相对应的两个数的比值一定,这是关键。

  4、认识正比例图象。(课件出示例1的表格及正比例图象)

  (1)观察表格和图象,你发现了什么?

  (2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?

  无论怎样延长,得到的都是直线。

  (3)从正比例图象中,你知道了什么?

  生1:可以由一个量的值直接找到对应的另一个量的值。

  生2:可以直观地看到成正比例的量的变化情况。

  (4)利用正比例图象解决问题。

  不计算,根据图象判断,如果买9m彩带,总价是多少?49元能买多少米彩带?

  小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几倍?预设生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。设计意图:先从观察图象入手,引导学生直观认识相关联的量,再结合表中的数据,引导学生发现总价与数量的比值一定,使学生理解正比例的意义,最后结合正比例图象,把数据与点联系起来,根据图象,不用计算就能找到一个量的值所对应的另一个量的值,使学生在解决问题的同时,感受数形结合思想。

  三、课堂练习:

  1、P46“做一做”

  2、练习九第1、3~7题

  六年级比例教学设计 8

  【教学目标】

  1.使学生认识比例尺的意义,学会求一幅平面图的比例尺。

  2.使学生感受数学在解决问题中的作用,提高学生学习数学的兴趣和信心。

  【教学重点、难点】

  根据比例尺的意义和图上距离或实际距离,求出实际距离或图上距离。

  【教学准备】

  课件

  【教学方法】

  自主、合作、探究

  【学习流程】

  一、情境创设,导入新课

  上节课,我们初步认识路比例尺。并能根据一定的比例画出物体表面的示意图其实比例的应用还有很多,你知道富区离齐市有多远吗?你知道富区有多大吗?你知道水立方有多大吗?画一张小小的示意图,这些问题都可以迎刃而解,今天我们来学习比例尺的应用。板书课题:比例尺的应用。

  二、运用知识,分层练习。

  1.课件出示幸福小学新建校园示意图,组织学生根据地图测量有关数据,展开教学。

  2.①找一找地图上的比例尺,写在黑板上,并说一说比例尺的意义。

  ②将找到的比例尺互化。

  ③组织学生根据地图测量校园长、宽图上距离,根据比例尺求出其实际距离然后求出校园占地面积,就此展开练习教学。

  ④师生交流,总结点评。

  3、课件出示学校平面图,各小组分别选择一个建筑的平面图,根据有关的数据,求出这个建筑的实际占地面积。(教学楼、操场、办公楼、语音室、花坛、图书馆)

  ①想一想,议一议,根据问题应该先求什么?

  ②解答。

  ③师生交流,总结点评。

  本组练习题主要是训练学生在熟练掌握公式的基础上,能够灵活运用知识,并融会贯通,使学生会进一步理解与巩固知识。

  第三组:综合运用、深化发展

  请根据下列描述,先算出有关数据,再按1:2000的'比例尺和绘图要求画出旗杆的位置。

  旗杆的位置离学校南墙有30米,离学校西墙100米。

  ①学生解答

  ②师生互动交流,并加以个别指导、点拨并分析、评价。

  本次练习题主要是训练学生能综合运用所学的知识解决简单的实际问题的能力,发展动手操作能力。

  三、作业

  1、设计根据中华人民共和国地图上的有关数据求出富区到齐市的实际距离的应用题,并解答。

  2、利用网络收集水立方的相关信息,根据比例尺1:2000求它的占地面积,并画出示意图。

  四、回顾整理,反思提升

  这节课学习了什么内容,(板书课题)你学到了什么?在本节课的学习中有什么体会?

  六年级比例教学设计 9

  教学内容:

  北师大版数学第十二册第二单元教材第24页反比例的教学内容。

  教学目标:

  1、结合丰富的实际,认识反比例,能根据反比例的意义,判断两个相关的量是不是成反比例,利用反比例解决一些简单的生活问题,感受反比例在生活中的广泛应用。

  2、培养学生的逻辑思维能力。

  3、渗透数学源于生活的观点。

  重点难点

  1、通过具体问题认识成反比例的量。

  2、掌握成反比例的量得变化规律及其特征。

  教具准备:

  课件

  教学过程

  一、复习铺垫,导入新课

  1、复习

  (1)路程、时间和速度这三种量中;当速度一定时,路程和时间成正比例吗?为什么? 当时间一定时,路程和速度成正比例吗?为什么?

  (2)正比例关系式用字母表示为(),y随着x的矿大而(),随着的()而()。

  (3)、判断两种量是不是成正比例:一看();二看()

  2、揭示课题。

  师:看来大家对正比例知识理解掌握得非常好,学完正比例接下来我们就该学习什么了?(生答)是啊,有正就有反,的确这节课我们就来探究反比例的有关知识(板书:反比例)

  二、运用迁移,探索新知

  1、探究情境

  (一)让学生把汽车行驶的'速度和时间的表填完整。观察上表,思考下面的问题:

  (1)表中有哪两种量?

  (2)时间是怎样随着速度的变化而变化的?

  (3)表中那个量没有变?

  (4)写出三者的关系式

  2、探究情境

  (二)把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?哪一个没变?用自己的语言描述变化关系。

  写出关系式:每杯果汁量×杯数=果汗总量(一定)以上两个情境中有什么共同点?

  3、反比例意义

  引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系(板书)

  4、情境

  (三)认识加法表中和是12的直线及乘法表中积是12的曲线。

  引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

  三、联系生活,巩固练习

  1、判断下面每题中的两个量是不是成反比例,并说明理由。

  (1)圆柱体的体积一定,底面积和高。

  (2)小林做10道数学题,已做的题和没有做的题。

  (3)长方形的长一定,面积和宽。

  (4)平行四边形面积一定,底和高。

  2、判断下面每题中的两种量是不是成反比例,并说明理由。

  (1)煤的总量一定,每天的烧煤量和能够烧的天数。

  (2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。

  (3)生产电视机的总台数一定,每天生产的台数和所用的天数。

  四、课堂小结

  今天同学们学到了什么知识?觉得还有什么地方感到困惑的吗?

  五、作业:找一找生活中有哪些例子成反比例。

  六、板书设计

  反比例

  速度×时间=路程(一定)

  每杯的果汁量×分的杯数=果汁总量(一定)

  两种相关联的量,一种量变化,另一种量也随着变化,变化时两种量中相对应的两个数的积一定,这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。

  六年级比例教学设计 10

  教学目标:

  1、理解解比例的意义,掌握解比例的方法,会正确的解比例,能根据比例的意义列比例解决实际问题。

  2、学会应用比例的意义和基本性质解决实际问题。

  教学重点:

  掌握解比例的方法,会解比例。

  教学难点:

  应用比例的意义和基本性质解决生活中的`实际问题。

  教法设计:

  讲解法、对比法、归纳法。

  学法设计:

  合作交流、对比归纳。

  教学准备:

  多媒体课件

  教学过程:

  一、复习铺垫,引入新课

  (一)汇报预习案上复习题。

  1、解下列方程.

  χ=×

  2、应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?把组成的比例写出。

  6∶10和9∶155∶1和6∶2

  3、在括号里填上适当的数。

  3:9=():156:0.8=():4

  可以根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。(板书课题)

  看到课题你想了解些什么?(出示学习目标)

  二、自主探究,合作交流,完成预习案。

  三、汇报展示,引导点拨

  1、从题目中你获得了哪些信息?

  2、理解题意

  根据题意可知“模型的高度:原塔高度=1:10”,已知原塔的高度为320m,如果设模型的高χ米,则可列出比例式为(   ):320=1:10

  根据比例的基本性质,两个外项χ与10相乘的积()两内项320与1的积。(填等或不等):

  3、列式解答

  指名板演,老师点拨。

  小结:这种方法叫做用比例解决实际问题。

  4、小结解比例的方法及应注意的问题。

  四、知识检测,达标提升

  1、解下面的比例

  2、解下面的比例

  (1)8︰12=X︰45

  (2)0.4︰X=1.2︰2

  3、博物馆展出了一个高为19.6厘米的秦代将军俑模型,它的高度与实际高度的比是1:10。这个将军俑的实际高度是多少?

  五、拓展延伸,总结激励

  作业布置:

  练习八7、10题。

  板书:解比例

  1、什么叫做解比例

  例:1.5:2.5=6:X

  解2.5×6=1.5X

  1.5X=15

  X=10

  X:320=1:10

  解10X=320

  X=32

【六年级比例教学设计】相关文章:

比与比例教学设计11-27

比例的意义教学设计07-26

《比例尺》教学设计06-26

《正比例》教学设计12-18

《反比例函数》教学设计10-27

比和比例教学设计(精选26篇)10-21

《比例的应用》教学设计(精选12篇)03-14

比例的基本性质教学设计06-04

六年级数学解比例教学设计03-28

六年级《解比例》教学设计(精选22篇)02-02