北师大版数学《反比例》教学设计(通用12篇)
两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。这两种量叫做成反比例的量。它们的关系叫做反比例关系。现在我们来看看北师大版数学《反比例》教学设计,希望对大家有所帮助。
数学《反比例》教学设计 篇1
教学内容:北师大版数学第十二册第二单元教材第24页反比例的教学内容。
教学目标:
1、结合丰富的实际,认识反比例,能根据反比例的意义,判断两个相关的量是不是成反比例,利用反比例解决一些简单的生活问题,感受反比例在生活中的广泛应用。
2、培养学生的逻辑思维能力。
3、渗透数学源于生活的观点。
重点难点
1、通过具体问题认识成反比例的量。
2、掌握成反比例的量得变化规律及其特征。
教具准备:课件
教学过程
一、复习铺垫
师:上一节我们学习了正比例,请同学们回忆怎样判断两个相关联的量是否成正比例?(指名答)
师:简单概括两个相关联的量成正比例的关键是什么?生答,强调:他们的比值(商)一定。
二、谈话引题
师:看来大家对正比例知识理解掌握得非常好,学完正比例接下来我们就该学习什么了?(生答)是啊,有正就有反,的确这节课我们就来探究反比例的有关知识(板书:反比例)
三、猜想激趣
师:既然正与反意义是相反的,请同学们猜想成反比例的两个量的关系是怎样的呢?(生猜想)到底同学们的猜想是否正确?我们要用事实来验证。
四、验证归纳
师:1.研究情境(一)
让学生把汽车行驶的速度和时间的表填完整。
观察上表,思考下面的问题:
(1)表中有哪两种量?
(2)时间是怎样随着速度的变化而变化的?
(3)表中那个量没有变?
(4)写出三者的关系式
2.研究情境(二)
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?哪一个没变?用自己的语言描述变化关系。
写出关系式:每杯果汁量×杯数=果汗总量(一定)
以上两个情境中有什么共同点?
3.反比例意义
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系(板书)
4.情境(三)
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
五、课堂练习
1、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)圆柱体的体积一定,底面积和高。
(2)小林做10道数学题,已做的题和没有做的题。
(3)长方形的长一定,面积和宽。
(4)平行四边形面积一定,底和高。
2、判断下面每题中的两种量是不是成反比例,并说明理由。
(1)煤的总量一定,每天的烧煤量和能够烧的天数。
(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。
(3)生产电视机的总台数一定,每天生产的台数和所用的天数。
六、全课小结
今天同学们学到了什么知识?觉得还有什么地方感到困惑的吗?
七、作业:找一找生活中有哪些例子成反比例。
板书设计
反比例
速度×时间=路程(一定)
每杯的果汁量×分的杯数=果汁总量(一定)
两种相关联的量,一种量变化,另一种量也随着变化,变化时两种量中相对应的两个数的积一定,这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。
教学反思:
在教学反比例的意义时,我首先通过复习,巩固学生对正比例意义的理解。因为反比例的意义这一部分的内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,目的在学生之间创设了一种相互交流、相互合作、相互帮助的关系,让学生主动、自觉地去观察、分析、概括、发现规律,培养了学生的自学能力,可是在操作时却发现,学生对第一表格的填写就出现了问题,对路程=速度X时间这一关系式掌握的不好,题中的求汽车和小轿车的行驶时间需求出和自行车的行驶的同一路程(已知自行车的速度和时间),没能及时引导学生发现,因此耽误了一些时间,所幸的是后面归纳反比例意义是学生发现两个例题的共同点,能够概括出反比例的意义。在今后的教学中一定要充分了解学情,灵活应对课堂生成问题,使教学更符合学生实际。
数学《反比例》教学设计 篇2
教学内容
教科书第58-59页例1,课堂活动及练习十三1-3题。
教学目标
1.使学生理解反比例的意义,能正确判断成反比例关系的量。
2.经历反比例意义的构建过程,培养学生的探索发现能力和归纳概括能力。
3.使学生体会反比例与生活的联系,进行辩证唯物主义观点的启蒙教育。
教学重点
引导学生正确理解反比例的意义。
教学难点
正确判断两种量是否成反比例。
教学过程
一、复习旧知,感受新知
情景游戏:对口令
(1)同样的面包单价:2元∕个。老师说个数,学生对总价(对口令的同时用课件展示出下表)。
表1买同样的面包
买的数量(个)12345……
总价(元)246810……
教师:面包总价与个数之间有什么关系呢?它们成什么比例?为什么?
反馈:面包的总价与个数成正比例。因为它们是两种相关联的量,面包个数扩大或缩小若干倍,总价也随着扩大或缩小相同的倍数,并且它们的比值(单价)一定。
根据学生的回答板书,成正比例的量所具有的三个特征:
①两种相关联的量②变化有规律③一定的量
(2)共有30个苹果分给小朋友。老师说出小朋友的人数,学生回答分得的苹果个数。(对口令的同时用课件展示出下表)
表230个苹果分给小朋友
小朋友的人数(人)13510……
每个小朋友分得个数(个)301063……
从这个表中,你有什么发现?
反馈:小朋友的人数与每个小朋友分的个数的乘积都是30;它们是相关联的两种量;小朋友的人数越多,每个小朋友分得的苹果个数就越少……
提问:小朋友的人数与每个小朋友分得的苹果个数成正比例吗?为什么?
教师:那么这两种量到底是一种什么关系呢?今天我们就一起来学习新的知识。
二、对比探究,获取新知
1.感知几种不同的变化规律
(1)某旅游公司的导游带领60名游客来到井冈山游览,准备分组活动,提出的分组建议如下表。
表360名游客在井冈山游览
每组人数35615
组数2012104
教师:谁来说说,你是怎样算每组人数和组数的?
抽几名学生说出自己的计算方法。
教师:从这个表中你发现了什么规律?
反馈:总人数60人没变,每组人数和组数的乘积是一定的;每组的人数在扩大,组数反而缩小……
(2)游览的第一天晚上,导游写了一篇情况总结,要把它存入电脑。
表4打一篇稿子
每分打字(个)1201007550
所需时间(分)25304060
教师:必须先算出哪个量?为什么?学生独立计算,然后集体订正。
(3)第二天,导游将带领这批游客,行一段路程。
表5行一段路程
已行的路程(km)1234
剩下的路程(km)19181716
填这个表时,你是怎样想的?集体订正。
表6行一段路程
路程(km)12202436
时间(时)3569
集体订正。
2.分类区别,概括意义
(1)教师:请同学们把这6张表进行分类,你会怎么分?为什么这样分?带着这个问题,请同学们分组讨论。
教师巡视,听取各小组意见,加强指导。
(2)汇报交流
反馈1:表1,6分一类,表2,3,4,5分一类。
反馈2:表1,6分一类,表2,3,4分一类,表5单独分成一类。
教师:为什么这样分类?
引导学生说出:表1,6成正比例分一类;不成正比例的表2,3,4它们的乘积一定,分成一类;表5是和一定,单独分成一类。
教师:现在我们一起来找出表2,3,4的共同特征。
学生1:每个表中的两种量都相关联。(板书:相关联)
学生2:一种量变化另一种量也随着变化。
学生3:从变化规律上看,表2中,人数越多,每人分得的个数越少,人数越少,每人分得的个数越多。
学生4:表3中,每组的人数扩大,组数反而缩小;表4中,每分打字的个数越少,所需要的时间反而越多……
教师简单概括:一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。两种量的变化方向正好相反。(板书:反)
学生5:表中两种量相对应的两个数的乘积是一定的。(板书:积)
正比例是一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数;而表2,3,4中,是一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。
(3)概括得出反比例的意义
教师根据学生的回答,引导学生概括得出:
两种相关联的量。
一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。
两种量相对应的两个数的乘积是一定的。
这是你们自己总结概括出来的结论,那么,你能给它们取个名字吗?
(揭示课题:反比例的意义)
像这样的两种量,叫做成反比例的量,它们的关系叫做反比例关系。
4.举例
抽生说一说生活中还有哪些成反比例的量。
学生1:路程一定,所行的时间与速
5.区分
表5中,一段路程20km一定时,已行的路程和剩下的路程成比例吗?为什么?
引导学生明确:虽然这也是两种相关联的量,但是它们的变化规律是增加或减少相同的数,而不是扩大或缩小相同的倍数;它们的和一定,而不是商一定或积一定。所以,它们不成比例。
三、直观操作,加深理解
1、完成第60页课堂活动1题
教师:请同学们看第1题的要求。哪位同学愿意说说你看了题目后的想法?
2、完成第60页课堂活动2题
3、完成第61页课堂活动3题
四、巩固练习,深化认识
练习十三1-3题,主要抓住正比例的本质属性“商一定”,反比例的本质属性“积一定”,要求学生独立完成,再集体订正。
五、课堂总结
今天,我们一起学习了什么?你有什么收获?
数学《反比例》教学设计 篇3
教学内容:教材14~16页例4、例5、例6,24页做一做,练习三4、5、6、7题。
素质教育目标
(一)知识教学点
1.理解反比例的意义。
2.能根据反比例的意义,正确判断两种量是否成反比例。
(二)能力训练点
1.培养学生的抽象概括能力。
2.培养学生的判断推理能力。
(三)德育渗透点
通过反比例意义的教学,使学生受到辩证唯物主义观点的启蒙教育。
教具学具准备:投影仪、投影片。
教学重点:引导学生总结概括出成反比例的量,是相关联的两种量中相对应的两个数的积一定,进而抽象、概括出成反比例关系式:X×Y=K(一定)
教学难点:利用反比例的意义,正确判断两种量是否成反比例。
教学步骤
一、铺垫孕伏
1.下表中的两种量是不是成正比例?为什么?
2.回忆:成正比例的量有什么特征?
二、探究新知
1.引入新课。我们已经学习了常见数量关系中成正比例关系的量的特征。这节课我们继续研究常见的数量关系中的另外一种特征——成反比例的量。(板书:成反比例的量)
2.教学例4
(1)出示例4,提出观察思考要求:(投影出示)
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(2)学生讨论交流。
(3)引导学生回答:
①表中的两种量是每小时加工的数量和所需的加工时间。
(板书:每小时加工数加工时间)
②每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
③每两个相对应的数的乘积都是600)。
教师适时点拨:
①想一想:每小时加工的数量和所需的加工时间是两种相关联的量吗?为什么?
(引导学生回答:是两种相关联的量,每小时加工的数量变化,加工时间也随着变化。同时板书。)
②议一议:这两种量的变化有什么规律吗?
(教师可以操作:一个竹筒内放30根筷子,每次拿3根,10次拿完;每次拿5根,6次拿完;每次拿6根,5次拿完;每次拿10根,3次拿完。想想:什么变了?什么没变?有什么规律吗?)
(订正时,随学生回答,板书:积一定)
③教师问:这个600实际上就是什么?(板书:零件总数(一定))
师指板书问:每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?(板书:×=)
(4)小结:通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
3.教学例5
(1)投影出示例5,根据题意,学生口述填表。
(2)观察上表,你发现了什么?引导学生回答下列问题:
①表中有哪两种量?(板书:每本页数装订本数)是相关联的量吗?
②装订的本数是怎样随着每本的页数变化的?
③表中的两种量有什么变化规律?
(3)订正时板书:在原板书“每小时加工数变化,加工时间也随着变化”的“每小时加工数”下板书“每本页数”,在“加工时间”下板书“装订本数”。
(4)教师问:这个积600实际上是什么?(板书:纸的总页数(一定))指板书问:每本页数、装订本数和纸的总页数之间有什么关系?(板书:×=)
4.比较例4和例5,概括反比例的意义
(1)请你比较例4和例5,它们有什么相同点?(学生互相议论一下)
(2)学生回答:
①都有两种相关联的量。
②都是一种量变化,另一种量也随着变化。
(板书:用“一种量”盖住“每小时加工数”和“每本页数”;用“另一种量”盖住“加工时间”和“装订本数”。)
③都是两种量中相对应的两个数的积一定。
(3)师小结:像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
(4)通过观察比较,谁能说说什么样的两种量叫做成反比例的量?
(找2~3名学生说,教师随时把板书补充完整)
5.教师引导学生明确:在例4中,所需的加工时间随着每小时加工数量的变化而变化,并且,每小时加工的数量和所需的加工时间的积,也就是零件总数是一定的。我们就说每小时加工的数量和所需的加工时间是成反比例的量。
议一议:在例5中,有哪两种相关联的量?它们是不是成反比例的量?为什么?
6.教师:如果用字母x和y表示两种相关联的量,用k表示它们的积一定,(随时板书:xyk(一定))反比例关系可以用一个什么样的式子表示?(板书:×=)
7.教学例6
(1)出示例6
(2)学生交流。
(3)学生汇报,教师点拨。
①每天播种的公顷数和要用的天数是不是相关联的量?
②每天播种的公顷数和要用的天数有什么关系?它们的积是什么?这个积一定吗?(板书:每天播种的公顷数×天数=播种的总公顷数(一定))
③播种总公顷数一定,每天播种公顷数和要用的天数成反比例吗?为什么?(板书:每天播种的公顷数和要用的天数成反比例。随着问为什么,板书:因为,所以)
想一想,播种的总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?为什么?(组织学生讨论)
8.完成做一做
三、巩固发展
1.想一想:成反比例的量应具备什么条件?
2.练习三第4题
3.判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
4.你能举一个反比例的例子吗?
四、全课小结
这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
五、布置作业练习三5题、6题。
数学《反比例》教学设计 篇4
教学目标:
通过比较,使学生进一步理解正比例和反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能够正确地判断正、反比例的关系,进一步发展学生的分析、比较、抽象、概括等能力。
教学过程:
一复习
判断下面每题中的两种量是成正比例还是成反比例?
1.速度一定,路程和时间。
2.正方形的边长和它的面积。
3.生产总时间一定,生产一个零件所用时间和零件总数。
4.中国儿童报的订数和钱数。
二引导练习
这节课我们要通过比较弄清成正、反比例的量有什么相同点和不同点。
板书课题:正、反比例的比较
出示表格。
表一:
路程/千米4080160200320
时间/时12458
表二
速度/每时行多少千米12090604030
时间/时346912
1.说一说。
提问:从表1中,你怎样发现速度是一定的?根据什么判断路程和时间成正比例?从表2中,你怎样发现路程是一定的?根据什么判断速度和时间成反比例?
2.想一想:路程、速度和时间这三个量中每两个量之间有什么样的比例关系?
师板书:速度时间=路程
师:当速度一定时,路程和时间成什么比例关系?
当路程一定时,速度和时间成什么比例关系?
当时间一定时,路程和速度成什么比例关系?
3.比较正比例和反比例关系。
通过前面的例子,比较正比例关系和反比例关系。你能写出它们的相同点和不同点吗?
学生同桌或前后桌讨论,教师提问并板书如下:
相同点:都有两种相关联的量,一种量变化,另一种量也随着变化。
不同点:正比例:两种量中相对应的两个数的积一定。关系式XY=K(一定)
4.小结;正比例和反比例有什么相同点和不同点?判断两种量是否比例,成什么比例的,方法是什么?
数学《反比例》教学设计 篇5
一、知识与技能
1.能灵活列反比例函数表达式解决一些实际问题
2.能综合利用几何、方程、反比例函数的知识解决一些实际问题
二、过程与方法
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题
2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力
三、情感态度与价值观
1.积极参与交流,并积极发表意见
2.体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具
教学重点:掌握从实际问题中建构反比例函数模型
教学难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想.
教具准备
1.教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)
2.学生准备:
(1)复习已学过的反比例函数的图象和性质
(2)预习本节课的内容,尝试收集有关本节课的情境资料
教学过程
一、创设问题情境,引入新课
复习:反比例函数图象有哪些性质?
反比例函数y?k
x是由两支曲线组成,
当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;
当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大
二、讲授新课
[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室
(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?
(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?
(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。
设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。而关键是充分运用反比例函数分析实际情况,建立函数模型,并且利用函数的性质解决实际问题。
师生行为:
先由学生独立思考,然后小组内合作交流,教师和学生最后合作完成此活动
在此活动中,教师有重点关注:
①能否从实际问题中抽象出函数模型;
②能否利用函数模型解释实际问题中的现象;
③能否积极主动的阐述自己的见解
生:我们知道圆柱的容积是底面积×深度,而现在容积一定为104m3,所以S·d=104。变形就可得到底面积S与其深度d的函数关系,即S=
所以储存室的底面积S是其深度d的反比例函数
104生:根据函数S=,我们知道给出一个d的值就有唯一的S的值和它相d
对应,反过来,知道S的一个值,也可求出d的值
题中告诉我们“公司决定把储存室的底面积5定为500m2,即S=500m2,”施工队施工时应该向下挖进多深,实际就是求当S=500m2时,d=?m.根据S=104104,得500=,解得d=20。dd
即施工队施工时应该向下挖进20米。
生:当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石。为了节约建设资金,公司临时改变计划,把储存室的深度改为15m,即d=15m,相应的储存室的底面积应改为多少才能满足需要;即当d=15m,S=?m2呢?
104根据S=,把d=15代入此式子,得d
S=104≈666.67.15104.d
当储存室的探为15m时,储存室的底面积应改为666.67m2才能满足需要。
师:大家完成的很好。当我们把这个“煤气公司修建地下煤气储存室”的问题转化成反比例函数的数学模型时,后面的问题就变成了已知函数值求相应自变量的值或已知自变量的值求相应的函数值,借助于方程,问题变得迎刃而解,
三、巩固练习
1、(基础题)已知某矩形的面积为20cm2:
(1)写出其长y与宽x之间的函数表达式,并写出x的取值范围;
(2)当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,
求其长为多少?
(3)如果要求矩形的长不小于8cm,其宽至多要多少?
2、(中档题)如图,某玻璃器皿制造公司要制造一种窖积为1升(1升=1立方分米)的圆锥形漏斗.
(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?
(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?
设计意图:
让学生进一步体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,更进一步激励学生学习数学的欲望。
师生行为:
由两位学生板演,其余学生在练习本上完成,教师可巡视学生完成情况,对“学困生”要提供一定的帮助,此活动中,教师应重点关注:
①学生能否顺利建立实际问题的数学模型;
②学生能否积极主动地参与数学活动,体验用数学模型解决实际问题的乐趣;
③学生能否注意到单位问题
生:解:(1)根据圆锥体的体积公式,我们可以设漏斗口的面积为Scm,漏斗的深为dcm,则容积为1升=l立方分米=1000立方厘米、
13000所以,S·d=1000,S=3d
(2)根据题意把S=100cm2代入S=30003000中,得100=.d=30(cm).dd
所以如果漏斗口的面积为100c㎡,则漏斗的深为30cm。
3、(综合题)新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5X103m2。
(1)所需的瓷砖块数n与每块瓷砖的面积s又怎样的函数关系?
(2)为了使住宅楼的外观更加漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80cm2,灰、白、蓝瓷砖使用比例为2:2:1,则需要三种瓷砖各多少块?
四、小结
1、通过本节课的学习,你有哪些收获?
列实际问题的反比例函数解析式(1)列实际问题中的函数关系式首先应分析清楚各变量之间应满足的分式,即实际问题中的变量之间的关系立反比例函数模型解决实际问题;(2)在实际问题中的函数关系式时,一定要在关系式后面注明自变量的取值范围。
2、利用反比例函数解决实际问题的关键:建立反比例函数模型。
五、布置作业
P54—55.第2题、第5题
六、课时小结
本节课是用函数的观点处理实际问题,并且是蕴含着体积、面积这样的实际问题,而解决这些问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么?可以是什么?逐步形成考察实际问题的能力,在解决问题时,应充分利用函数的图象,渗透数形结合的思想.
数学《反比例》教学设计 篇6
一、教材分析
反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。
二、学情分析
由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标
知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式
解决问题:能从实际问题中抽象出反比例函数并确定其表达式。情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际
四、教学重难点
重点:理解反比例函数意义,确定反比例函数的表达式
难点:反比例函数表达式的确立
五、教学过程
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;
(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化。
请同学们写出上述函数的表达式
14631000(2)y=tx
k可知:形如y=(k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=
是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。由于是分式,当x=0时,分式无意义,所以x≠0。
当y=中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。
举例:下列属于反比例函数的是
(1)y=(2)xy=10(3)y=k-1x(4)y=-
此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)
已知y与x成反比例,则可设y与x的函数关系式为y=
kx?1
k已知y+1与x成反比例,则可设y与x的函数关系式为y+1=xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=
已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1=kx?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。
例:已知y与x2反比例,并且当x=3时y=4
(1)求出y和x之间的函数解析式
(2)求当x=1.5时y的值
解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2
和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业
通过此环节,加深对本节课所内容的认识,以达到巩固的目的。
六、评价与反思
本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式。应该对这一方面的内容多练习巩固。
数学《反比例》教学设计 篇7
教学目标:
1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;
2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;
3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;
4、体会数学从实践中来又到实际中去的研究、应用过程;
5、培养学生的观察能力,及数学地发现问题,解决问题的能力
教学重点:
结合图象分析总结出反比例函数的性质;
教学难点:描点画出反比例函数的图象
教学用具:直尺
教学方法:小组合作、探究式
教学过程:
1、从实际引出反比例函数的概念
我们在小学学过反比例关系。例如:当路程S一定时,时间t与速度v成反比例
即vt=S(S是常数);
当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数)
从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:
(S是常数)
(S是常数)
一般地,函数(k是常数,)叫做反比例函数
如上例,当路程S是常数时,时间t就是v的反比例函数。当矩形面积S是常数时,长a是宽b的反比例函数。
在现实生活中,也有许多反比例关系的例子。可以组织学生进行讨论。下面的例子仅供
2、列表、描点画出反比例函数的图象
例1、画出反比例函数与的图象
解:列表
说明:由于学生第一次接触反比例函数,无法推测出它的大致图象。取点的时候最好多取几个,正负可以对称着取分别画点描图
一般地反比例函数(k是常数,)的图象由两条曲线组成,叫做双曲线。
3、观察图象,归纳、总结出反比例函数的性质
前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习。
显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证。(下列答案仅供参考)
(1)的图象在第一、三象限。可以扩展到k0时的情形,即k0时,双曲线两支各在第一和第三象限。从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限的讨论与此类似。
抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法。体现了由特殊到一般的研究过程。
(2)函数的图象,在每一个象限内,y随x的增大而减小;
从图象中可以看出,当x从左向右变化时,图象呈下坡趋势。从列表中也可以看出这样的变化趋势。有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小。由此可归纳出,当k0时,函数的图象,在每一个象限内,y随x的增大而减小。
同样可以推出的图象的性质。
(3)函数的图象不经过原点,且不与x轴、y轴交。从解析式中也可以看出,如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零。因此,呈现的是双曲线的样子。同理,抽象出图象的性质。
函数的图象性质的讨论与次类似。
4、小结:
本节课我们学习了反比例函数的概念及其图象的性质。大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识。数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释。即数学是世界的一个部分,同时又隐藏在世界中。
5、布置作业习题13.81-4
数学《反比例》教学设计 篇8
教学目标
知识与技能目标:使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。
能力目标:经历反比例意义的构建过程,培养发现的能力和归纳概括的能力。
情感与态度目标:体会反比例与生活之间的联系,感悟到事物之间相互联系和相互转化的辨证唯物主义的观点。
教学重难点
重点:理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。
难点:掌握反比例的特征,能够正确判断反比例关系。
教学过程
(一)复习猜想导入,引出问题。
1、成正比例的量有什么特征?什么叫正比例关系?
2、在生活中两个相关联的量有的成正比例关系,还可能成什么关系?学生很自然想到反比例,激发学生的学习欲望,问学生想学反比例的哪些知识,学生大胆猜测,对反比例的意义展开合理的猜想。由此导入新课。
达成目标:猜想导课,激发探究愿望
(二)共同探索,总结方法。
1、明确这节课的学习目标:
(1)理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
(2)经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
2、情境导入,学习探究。
(1)我们先来看一个实验。
高度(厘米)302015105
底面积(平方厘米)1015203060
体积(立方厘米)
提问:根据列表,你从中你发现了什么?
(2)学生讨论交流。
(3)引导学生回答:表中的两个量是高度和底面积。
高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。
每两个相对应的数的乘积都是300.
(4)计算后你又发现了什么?
每两个相对应的数的乘积都是300,乘积一定。
教师小结:我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。
教师提问:高底面积和体积,怎样用式子表示他们的关系?板书:高×底面积=水的体积(一定)
(5)如果用字母x和y表示两种相关联的.量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?板书:x×y=k(一定)
小结:通过上面的学习,你认为判断两种相关联的量是否成反比例,关键是什么?
(6)归纳总结反比例的意义。
(7)比较归纳正反比例的异同点。
达成目标:比较思想是在小学数学教学中应用十分普遍的数学思想方法,《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,学生从知识的差别中找到同一,也可以从同一中找出差别,学生学习新知识,进行深化拓展,归纳总结。
(三)运用方法,解决问题。
1、生活中,哪些相关联的量成反比例关系,举例说一说。
2、课后做一做每天运的吨数和运货的天数成反比例关系吗?为什么?
3、出示反比例图像,与正比例图像进行比较学习。
达成目标:学生利用对反比例概念的理解,判断相关联的量是否成反比例,学会分析并进行判断。
(四)反馈巩固,分层练习。
判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
达成目标:使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。
(五)课堂总结,提升认识
总结:今天我们学习了什么?(揭示课题—反比例)你有什么收获?学习中,你要提示大家注意什么?你对今天的学习还有什么疑问吗?
数学《反比例》教学设计 篇9
从容说课
我们学习知识的目的就是为了应用,如能把书本上学到的知识运用到实际生活中,这就说明确实把知识学好了,会用了用函数观点处理实际问题的关键在于分析实际情境、建立函数模型,并进一步提出明确的数学问题,教学时应注意分析的过程,即将实际问题置于已有知识背景之中,用数学知识重新解释这是什么?可以看成什么?让学生逐步学会用数学的眼光考查实际问题。同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想。
此外,解决实际问题时。还要引导学生体会知识之间的联系以及知识的综合运用
教学目标
(一)教学知识点
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程
2.体会数学与现实生活的紧密联系,增强应用意识。提高运用代数方法解决问题的能力
(二)能力训练要求
通过对反比例函数的应用,培养学生解决问题的能力
(三)情感与价值观要求
经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题。理解问题,并能综合运用所学的知识和技能解决问题。发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用
教学重点
用反比例函数的知识解决实际问题
教学难点
如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题
教学方法
教师引导学生探索法
教学过程
Ⅰ.创设问题情境,引入新课
[师]有关反比例函数的表达式,图象的特征我们都研究过了,那么,我们学习它们的目的是什么呢?
[生]是为了应用
[师]很好;学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学
Ⅱ.新课讲解
某校科技小组进行野外考察,途中遇到片十几米宽的烂泥湿地。为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务;你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600N,那么
(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?
(2)当木板画积为0.2m2时。压强是多少?
(3)如果要求压强不超过6000Pa,木板面积至少要多大?
(4)在直角坐标系中,作出相应的函数图象
(5)清利用图象对(2)和(3)作出直观解释,并与同伴进行交流
[师]分析:首先要根据题意分析实际问题中的两个变量,然后看这两个变量之间存在的关系,从而去分析它们之间的关系是否为反比例函数关系,若是则可用反比例函数的有关知识去解决问题
请大家互相交流后回答
[生](1)由p=得p=
p是S的反比例函数,因为给定一个S的值。对应的就有唯一的一个p值和它对应,根据函数定义,则p是S的反比例函数
(2)当S=0.2m2时,p==3000(Pa)
当木板面积为0.2m2时,压强是3000Pa。
(3)当p=6000Pa时,
S==0.1(m2)
如果要求压强不超过6000Pa,木板面积至少要0.1m2
(4)图象如下:
(5)(2)是已知图象上某点的横坐标为0.2,求该点的纵坐标;(3)是已知图象上点的纵坐标不大于6000,求这些点所处的位置及它们横坐标的取值范围
[师]这位同学回答的很好,下面我要提一个问题,大家知道反比例函数的图象是两支双曲线、它们要么位于第一、三象限,要么位于第二、四象限,从(1)中已知p=>0,所以图象应位于第一、三象限,为什么这位同学只画出了一支曲线,是不是另一支曲线丢掉了呢?还是因为题中只给出了第一象限呢?
[生]第三象限的曲线不存在,因为这是实际问题,S不可能取负数,所以第三象限的曲线不存在
[师]很好,那么在(1)中是不是应该有条件限制呢?
[生]是,应为p=(S>0)。
做一做
1、蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R(Ω)之间的函数关系如下图;
(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?
(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?
[师]从图形上来看,I和R之间可能是反比例函数关系。电压U就相当于反比例函数中的k。要写出函数的表达式,实际上就是确定k(U),只需要一个条件即可,而图中已给出了一个点的坐标,所以这个问题就解决了,填表实际上是已知自变量求函数值。
[生]解:(1)由题意设函数表达式为I=
∵A(9,4)在图象上,
∴U=IR=36
∴表达式为I=
蓄电池的电压是36伏
(2)表格中从左到右依次是:12,9,7.2,6,4.5,3.6
电源不超过10A,即I最大为10A,代入关系式中得R=3.6,为最小电阻,所以用电器的可变电阻应控制在R≥3.6这个范围内
2、如下图,正比例函数y=k1x的图象与反比例函数y=的图象相交于A,B两点,其中点A的坐标为(,2)
(1)分别写出这两个函数的表达式:
(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流
[师]要求这两个函数的表达式,只要把A点的坐标代入即可求出k1,k2,求点B的
坐标即求y=k1x与y=的交点
[生]解:(1)∵A(,2)既在y=k1x图象上,又在y=的图象上
∴k1=2,2=
∴k1=2,k2=6
∴表达式分别为y=2x,y=
∴x2=3
∴x=±
当x=?时,y=?2
∴B(?,?2)
Ⅲ.课堂练习
1.某蓄水池的排水管每时排水8m3,6h可将满池水全部排空
(1)蓄水池的容积是多少?
(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?
(3)写出t与Q之间的关系式;
(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?
(5)已知排水管的最大排水量为每时12m3,那么最少多长时间可将满池水全部排空?
解:(1)8×6=48(m3)
所以蓄水池的容积是48m3
(2)因为增加排水管,使每时的排水量达到Q(m3),所以将满池水排空所需的时间t(h)将减少
(3)t与Q之间的关系式为t=
(4)如果准备在5h内将满池水排空,那么每时的排水量至少为=9.6(m3)
(5)已知排水管的最大排水量为每时12m3,那么最少要=4小时可将满池水全部排空
Ⅳ、课时小结
节课我们学习了反比例函数的应用。具体步骤是:认真分析实际问题中变量之间的关系,建立反比例函数模型,进而用反比例函数的有关知识解决实际问题。
Ⅴ课后作业
习题5.4.
板书设计
§5.3反比例函数的应用
一、1.例题讲解
2.做一做
二、课堂练习
三、课时小节
四、课后作业(习题5.4)
数学《反比例》教学设计 篇10
教学内容:教材第56页复习第4~l0题。
教学要求:
1.使学生加深认识正比例关系和反比例关系的意义,进一步掌握判断两种相关联的量是否成正比例或反比例的方法,提高分析、判断的能力。
2.使学生进一步掌握正、反比例应用题的解题思路和解题方法,提高解答正、反比例应用题的能力。
教学重点:加深认识正比例关系和反比例关系的意义。
教学难点:提高解答正、反比例应用题的能力。
教学过程():
一、揭示课题
在“比例”这一单元里,除了认识了比例的意义和性质外,还学习了成正、反比例量的有关知识。这节课,我们复习正、反比例。(板书课题)通过复习,一要加深对成正比例关系和成反比例关系量的认识,提高两种相关联量成正比例还是反比例关系的判断能力;二要进一步认识正、反比例的应用题,加深理解正、反比例应用题的解题思路和方法,提高用比例知识解答应用题的能力。
二、复习正、反比例的意义
1.做复习第4题。
让学生看第4题,思考各成什么比例。指名学生口答,说明理由。
2.整理正、反比例的意义。
提问:刚才是根据正、反比例的意义判断的。现在,谁来说一说正、反比例的意义各是什么?
根据正比例和反比例的意义,正比例和反比例有什么相同和不同的地方?(板书正比例和反比例的相同点和不同点)判断正、反比例的关键是什么?
3.做复习第5题。
小黑板出示,指名学生口答,并说明理由。说明:根据实际问题里相关联量所成的正比例或反比例关系,可以用比例知识解答相应的应用题。
三、复习正、反比例应用题
1.整理解题思路。
(1)做复习第6题。
让学生读题,思考各成什么比例的应用题。指名学生说明各是什么应用题,为什么。指名两人板演,其余学生做在练习本上。集体订正,让学生说明根据什么列式的。
(2)提问:解答正、反比例应用题要怎样想?在解题方法上有什么不同的地方?
2.综合练习。
(1)做复习第8题。
让学生读题。提问:“药粉和水的比是1:500”你是怎样想的?(引导学生看出药粉和水的份数以及1:500表示比值一定等)这两道题成什么比例,为什么?让学生做在练习本上。指名学生口答等式,老师板书。再让学生说说怎样想的,根据什么列式的。追问:这道题还可以怎样做?(让学生思考按比的意义,应用分数知识或归一方法,口答算式)
(2)做复习第l0题。
要求学生思考有哪些方法解答第一个问题.指名一人板演,其余学生做在练习本上。要求列出不同解法的式子。集体订正,说说各是怎样想的。
四、课堂小结
这节课复习了哪些内容?谁来说一说这节课你掌握了哪些知识或方法?
五、课堂作业
复习第7、9题,第10题第二个问题。
数学《反比例》教学设计 篇11
学习目标
结合丰富的实例,认识反比例。能根据反比例的意义,判断两个相关联的量是不是成反比例。利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。
学习重点
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
过程与方法
教师活动
一、复习
1、什么是正比例的量?
2、判断下面各题中的两种量是否成正比例?为什么?
(1)工作效率一定,工作时间和工作总量。
(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。
(3)正方形的边长和它的面积。
二、导入新课
利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。
三、进行新课
情境(一)
认识加法表中和是12的直线及乘法表中积是12的曲线。
情境(二)
让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考
同桌交流,用自己的语言表达写出关系式:速度×时间=路程(一定)观察思考并用自己的语言描述变化关系乘积(路程)一定
情境(三)
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?化关系
写出关系式:每杯果汁量×杯数=果汗总量(一定)
5、以上两个情境中有什么共同点?
反比例意义
引导小结:
活动四:想一想
P26页第1、2、3题
关系式:X×Y=K(一定)
课后反思:
学生活动
学生自由回答,相互补充。
学生观察,弄清题意。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
独立观察,思考同桌交流,用自己的语言表达写出关系式:速度×时间=路程(一定)观察思考并用自己的语言描述变化关系乘积(路程)一定。
你有什么发现?用自己的语言描述
都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。
数学《反比例》教学设计 篇12
教学目标
1.进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律.
2.使学生能正确判断正、反比例.
教学重点
正、反比例的联系和区别.
教学难点
能正确判断正、反比例.
教学过程()
一、复习准备
判断下面每题中两种量成正比例还是成反比例.
1.单价一定,数量和总价.
2.路程一定,速度和时间.
3.正方形的边长和它的面积.
4.时间一定,工效和工作总量.
二、新授教学
(一)出示课题
教师明确:我们已经初步学习了判断两种量是不是成正比例或反比例的关系,这节课通过比较弄清它们有什么相同点和不同点.
(二)教学例7(课件演示:正反比例的比较)
例7.观察下面的两个表,根据表分别填空.
表1
路程(千米)
5
10
25
50
100
时间(时)
1
2
5
10
20
在表1中相关联的量是()和(),()随着()变化,()是一定的.因此,时间和路程成()关系.
表2
速度(千米/时)
100
50
20
10
5
时间(时)
1
2
5
10
20
在表2中相关联的量是()和(),()随着()变化,()是一定的.因此,时间和速度成()关系.
1.分组讨论、交流.
2.引导学生讨论回答
(1)从表1中,怎样知道速度是一定的?根据什么判断速度和时间成正比例?
(2)从表2中,怎样知道路程是一定的?根据什么判断速度和时间成反比例?
3.引导学生总结路程、速度、时间三个量中每两个量之间的关系.
速度×时间=路程
4.练习:判断下面两个量成什么比例.
(1)当速度一定时,路程和时间.
(2)当路程一定时,速度和时间.
(3)当时间一定时,路程和速度.
(三)比较正比例和反比例的关系.(继续演示课件:正反比例的比较)
讨论填表:正、反比例异同点
相同点:都有两种相关联的量,一种量随着另一种量变化.
不同点:正比例是变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小.相对应的每两个数的比值(商)是一定的.反比例是变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大).相对应的每两个数的积是一定的.
三、课堂小结
今天我们学习了哪些知识?你还有什么问题吗?
四、巩固练习
(一)判断单价、数量和总价中一种量一定,另外两种量成什么比例.为什么?
1.单价一定,数量和总价成().
2.总价一定,单价和数量成().
3.数量一定,总价和单价成().
(二)从汽车每次运货吨数、运货的次数和运货的总吨数这三种量中,你能找出哪几种比例关系?
五、课后作业
一个单位食堂每天用大米的数量、用的天数和大米的总量如下表.
表1
在表1中,相关联的量是()和(),()随着()变化,()是一定的.因此,大米的总量和用的天数成()关系.
表2
在表2中,相关联的量是()和(),()随着()变化,()是一定的.因此,每天用的数量和用的天数成()关系.
六、板书设计
正比例和反比例的比较
相同点
1.都有两种相关联的量.
2.一种量随着另一种量变化.
不同点
1.变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小.
2.相对应的每两个数的比值(商)是一定的.
1.变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大).
2.相对应的每两个数的积是一定的.
探究活动
灵活判断
活动目的
1.理解正反比例的意义.
2.能根据正反比例的意义,正确判断两种量是否成比例,成什么比例.
活动过程
1.教师出示思考题目:
(1)正方形的边长和面积是否成比例?
(2)圆的面积和半径是否成比例?
2.学生分小组讨论.
3.学生分小组汇报讨论结果.
4.师生共同小结并总结规律.
【数学《反比例》教学设计】相关文章:
《反比例函数》教学设计11-18
反比例函数的应用教学设计12-05
《反比例的意义》优秀教学设计及反思11-14
《反比例函数》教学设计(精选7篇)03-03
小学六年级数学反比例的教学设计12-08
六年级数学下册《反比例》教学设计06-16
物理反比例函数的应用的课程教学设计12-04
数学教学设计11-12