- 相关推荐
五年级教学设计《最大公因数》(精选5篇)
作为一位杰出的教职工,总归要编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么教学设计应该怎么写才合适呢?以下是小编整理的五年级教学设计《最大公因数》,仅供参考,欢迎大家阅读。
五年级教学设计《最大公因数》 篇1
教学目标:
1、通过游戏和动手操作理解两个数的公因数与最大公因数的意义,并能用集合图表示两个数的因数和公因数。
2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3、渗透集合思想,培养学生的分析,归纳能力和解决问题能力。
教学重点:
理解公因数和最大公因数的意义。
教学难点:
灵活找两个数的公因数的方法。
教具准备:
课件、实物展示台
教学过程:
一、复习旧知,导入新课
师:同学们,我们已经学过找一个数的因数的方法,如果老师现在给你一个数(12),你能很快找出它的因数吗?(生回答师板书)
师:你们真棒!照这样的方法,你能很快说出18的全部因数吗?(生回答师板书)
师:哪几个数既是12的因数又是18的因数?
生:1、2、3、6
师:能不能简单的说说它们是12和18的什么数吗?
生:公因数
师:在这些公因数里面,哪个数最大?
生:6最大
师:6就是12和18的最大公因数。
这就是我们这节课要学习的内容 ———找最大公因数(师板书课题)
二、探究新知:
1、学生当裁判,玩游戏:
(1)请学号是12因数的同学到前面来。(左)
(2)请学号是18因数的同学到前面来。(右)
(个别同学站位出现问题,请全体同学做裁判,1、2、3、6号应该站在什么位置?为什么?)
2、 学习集合图:
生:让1、2、3、6号站在中间。因为1、2、3、6既是12的因数又是18的因数,它们是12和18的公因数。可以用集合圈来表示。(课件出示)
(1)师:两个集合圈交叉重合的部分表示什么?填什么数?(生:填公因数)
(2)师:那圈里的左边、右边填什么数?(同桌交流,汇报结果)
3、得出结论:1、2、3、6既是12的因数又是18的因数,它们是12和18的公因数。在这些公因数里面,哪个数最大? (生:6最大)6就是12和18的最大公因数。
4、师:找两个数的公因数,除了上面的方法,谁还有不同的方法?
生:我先找出12的全部因数,再在12的因数中圈出和18相同的因数。
5、小结:
找两个数的公因数的方法: ①先找出各个数的因数 ②找出两个数公有的因数 ③确定最大公因数
三、小组合作,解决问题。
小组合作完成下面各题:
找每组数的最大公因数:
(1)、4和8 6和12 5和10 21和7
观察每组数,我们发现:(上面的每组数都是倍数关系,它们的`最大公因数是较小的数 )
(2)、3和5 2和7 11和19 13和23
观察每组数,我们发现:( 上面的每组数都是不相同的质数,它们的最大公因数是1 )
(3)、8和9 11和 12 5和6 14和15
观察每组数,我们发现:(上面的每组数都是相邻的自然数(0除外),它们的最大公因数是1 )
总结:我们今天学习了找两个数的最大公因数的方法有:
1、列举法
①先找出各个数的因数
②找出两个数公有的因数
③ 确定最大公因数
2、画集合图的方法
3、特殊数的方法:
(1)如果两数是倍数关系,那么它们的最大公因数是较小的数。
(2)如果两数是不相同的质数,那么它们的最大公因数是1。
(3)如果两数是相邻的自然数(0除外),那么它们的最大公因数是1。
四、巩固拓展:
1、我是小法官,对错我来判:
(1) 两个数的公因数的个数是无限的 。 ( )
(2)两个数的公因数一定小于这两个数 。 ( )
(3)最大公因数是1的两个数一定都是质数 。 ( )
2、学校组织了男生30人,女生20人的合唱队,男女生分别排队,要使每排人数相同,每排最多有多少人?
3、写出下列分数分子和分母的最大公因数:
8/12 ( ) 5/7 ( ) 9/10 ( ) 6/18( )
五、总结回顾:
通过这节课的学习,你有什么收获?
板书设计:
找最大公因数
12的因数有:1、2、3、4、6、12
18的因数有:1、2、3、6、9、18
1、2、3、6是12和18的公因数
6是它们的最大公因数
两个数公有的因数叫作这两个数的公因数
公因数中最大的一个叫作它们的最大公因数
五年级教学设计《最大公因数》 篇2
一、教学目标:
1、理解两个数的公因数和最大公因数的意义。
2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3、培养学生抽象、概括的能力。
二、教学重难点:
理解公因数和最大公因数的意义。
三、教具准备:
多媒体课件,方格纸(每人一张)。
四、教学过程:
(一)复习导入
1.复习。
教师出示一组卡片,让学生说一说卡片上各数的倍数有哪些。
教师再出示一组卡片,让学生说一说卡片上各数的因数有哪些。
2.导入。
师:我们学会了求一个数的因数,想不想学习怎样求两个数或三个数公有的因数呢?今天我们就通过游戏来学习公因数和最大公因数。
(二)创设情境,引出问题
今天我们来玩一个找伙伴的游戏。(课件出示游戏规则:学号是12的因数的同学站到讲台左边,学号是16的因数的同学站到讲台右边)同学们想好了吗?1~16号同学现在开始找伙伴。
学生开始找伙伴,站好后发现问题,有三个同学不知道该站在哪边才好。
师:你们3个为什么没有找到伙伴?
生1:我的学号是1,既是12的因数,又是16的因数,不知道该站在哪边才好。
生2:我的学号是2,既是12的因数,又是16的因数,不知道该站在哪边才好。
生3:我的学号是4,既是12的因数,又是16的因数,不知道该站在哪边才好。
师揭示概念:1,2,4是12和16公有的因数,叫做它们的公因数。其中,4是最大的公因数,叫做它们的最大公因数。
设计意图:游戏环节的'设计在教学中能为学生营造一个轻松、愉悦的学习氛围,学生们在这样的氛围中积极地参与数学活动,既体验了成功的快乐,又提高了自己的判断能力。
(三)求两个数的最大公因数
1.明确方法,提出要求。
师:先找两个数的因数,然后圈出两个数的公因数,再找出最大公因数,这就是我们求最大公因数的一般方法。那么你会求下面两个数的最大公因数吗?
课件出示教材60页例2:怎样求18和27的最大公因数?
2.学生试做后,组内交流。
3.讨论:如果只找出一个数的因数,你能找出两个数的最大公因数吗?
(先找较小的数18的因数,再看因数中哪些是27的因数,最后找出最大的一个)
4.反馈练习。
教师巡视,了解学生的做题情况。学生做完后,指名汇报,集体订正。
师:做完这道题,大家发现了什么?
(学生讨论后汇报)
(四)课堂小结通过本节课的学习,我们主要认识了公因数、最大公因数的意义。
公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。
(五)谈谈这节课你有什么收获?
五年级教学设计《最大公因数》 篇3
教学内容:
人教版五年级第十册66-69页最大公因数。
教学目标:
1、理解公因数,最大公因数和互质数的概念。
2、初步掌握求最大公因数的一般方法。
3、培养学生思维的有序性和条理性。
4、感受数学价值并体验数学与生活实际的联系,培养学生热爱生活的情感。
教学重,难点:
1、理解公因数,最大公因数,互质数的概念。
2、求最大公因数的一般方法。
教具准备:
多媒体教学课件。
教学过程:
一,师生共研,学习新知:
我们已经会求一个数的因数,那么今天我们来看两个数的因数又该怎样来求呢?
出示课件:
16的因数有:1、2、4、8、16
12的因数:1、2、3、4、6、12
那么既是16又是12的因数是:1、2、4
16和12的公有因数中最大的一个是:4
出示课件:
16的因数:1、2、4、8、16
12的因数:1、2、3、4、6、12
8的因数:1、2、4、8
师:我们就把1、2、4叫做16、12和8的什么呢?
生:公因数
师:4就是16、12和8的什么呢?
生:最大公因数。
师:请同学用自己的话说一说公因数是什么意思?
生:几个数公有的因数,就叫公因数。
生:就是几个数都有的因数,就叫公因数。
师:同学谁能说一下什么又是最大公因数呢?
生:几个数公因数里面最大的一个,就叫最大公因数。
师生共同总结概念:
公因数:几个数公有的因数,叫做这几个数的公因数。
最大公因数:几个数公因数里最大的一个,叫做这几个数的最大公因数
二、巩固练习,加深理解:
出示课件:
同学们能不能找出15和18的公因数,再找出它们的最大公因呢?
15的因数18的因数15的因数18的因数
不清
15和18的公因数
三、合作探究,认识互质数
1、5和7的公因数和最大公因数各是多少?
5的因数:1、5.7的因数:1、7.
5和7的公因数有:1.5和7的最大公因数是:1.
2、7和9呢?
7的因数:1,7.9的因数:1,3,9.
7和9的公因数有:1.7和9的最大公因数是:1
指名回答:并让学生说出自己的看法和理由。
师总结:公因数只有1的两个数,叫做互质数。
同学们认识了公因数和最大公因数?同学们想不想去求两个数的最大公因数呢?
四、深化练习、掌握方法:
那么大家想一想18和30的最大公因数怎么去求呢?
小组讨论方法:小组代表发言汇报讨论结果。
师引导出用分解质因数的方法,
18=2×3×330=2×3×5
归纳出:18和30的公有的质因数是2和3,
那么最大公因数就是2×3=6
能不能用更简便的方法呢?
把两个短除法合并成一个短除法
21830→用公有的质因数2除
3915→用公有的质因数3除
35→除到两个商是互质数为止
把所有的除数乘起来,得到18和30的最大公因数是
2×3=6
学生总结短除法求最大公因数的方法。
求两个数的最大公因数,一般先用这两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来.
鼓励学生用不同的方法去完成练习。
求12和20的最大公因数
学生动手练习,师巡视指导,学生上黑板演示过程。
五、小小能手、我来闯关:
第一关:填一填
1.15的因数有(),20的'因数有()它们的公因数有(),最大公因数是().
2.8和9的公因数有(),最大公因数是()
第二关:判一判
1.公因数有1的两个数是互质数().
2.12的因数只有2、3、4、6、12。()
3.成为互质数的两个数一定都是质数.()
第三关:做一做
木材市场运来一批长12米,16米和20米的木材,把这三种长度的木材截成同样长,最长可以截成每根是多少米?
六、全课小节、畅谈收获:
学生谈本节课上的收获。师总结本节课主要内容并指出我国古代的《九章算术》已经有求两个数最大公因数的方法了对学生进行德育教育,激发学生的民族自豪感。
七、板书设计:
最大公因数
公因数:几个数公有的因数。
最大公因数:公因数里最大的一个。
互质数:公因数只有1的两个数。
把18和30分别分解质因数
218230
39315
35
18=2×3×3
30=2×3×5
18和30的公有质因数是2和3,因此:
18和30的最大公因数是2×3=6
合并两个短除法
21830→用公有的质因数2除
3915→用公有的质因数3除
35→除到两个商是互质数为止
把所有的除数乘起来,得出18和30的最大公因数是2×3=6
教学反思
教材对求最大公因数的编排,只是让学生用边长是整分米数的正方形地砖把贮藏室的地面铺满(使用的地砖都是整块),可以选择边长是几分米的地砖?边长最大的是几分米?由此引出最大公因数,教学中根据学生年龄特征,让学生用不同的小正方形摆拼、观察、思考,重视知识形成过程,同时,渗透由特殊到一般的不完全归纳法的数学思想。在摆拼过程中教师和学生一起操作,引发学生强烈的兴奋感和新切感,拉近了师生间的距离,营造了和谐、活跃、向上的学习氛围。
1.借助操作活动,经历概念的形成过程。
本节课以直观的操作活动,让学生经历公因数和最大公因数概念的形成过程。这样安排有两点好处:一是学生通过操作活动,能体会公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。学生通过操作,发现用边长1厘米、2厘米、4厘米的正方形都正好铺满长16厘米,宽12厘米的长方形。在此基础上,引导学生思考1、2、4这些数和16、12有什么关系。这时揭示公因数和最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。并在此基础上,借助直观的集合图显示公因数的意义。实实在在让学生经历了概念的形成过程,效果较好。
2.预设探究过程,增强学生主体意识。
为了解决问题,学生充分调动了已有知识经验、方法、技能,找出了各种求“18和27的公因数和最大公因数”的方法。在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识,也充分体现了教师驾驭教材,调控学生的能力。
3.提倡思考方法的多样化。
在教学中,我把重点放在找两个数的公因数的方法上,鼓励学生找最大公因数方法的多样化。学生可能想到三种方法,通过讨论,引导学生对方法进行优化,我认为用短除法求最大公因数是一个很有效、很简便的方法,应该让学生掌握。在这中间教师应注意引导、小结、鼓励,重视方法和策略的渗透,以提高学生的学习能力
五年级教学设计《最大公因数》 篇4
教学目标:
1、让学生在解决问题的过程中理解公因数和最大公因数的意义,探索找公因数的方法,会正确找出两个数的公因数与最大公因数。
2、渗透集合思想,体验解决问题策略的多样化。
3、培养学生的抽象能力和解决问题能力。
教学重点、难点:
公因数与最大公因数的定义,探索找两个数的最大公因数
教学准备:
多媒体课件。
教学过程:
一、预设情境,感受新知
1、情境引入
情境图→文字→表格
最近杨老师家买了新房子,其中有一个长16分米、宽12分米的贮藏室,她想用边长是整分米数的正方形地砖把储藏室的地面铺满,使用的地砖都是整块。
你知道凌老师对铺地砖的要求是什么吗?(交流 “正方形地砖” “都是整块的” “边长还要是整分米数” 什么是整分米数?)
2、合作探究
(1)讨论
用长方形方格纸代表长16分米、宽12分米的储藏室地面,每个方格可以代表边长是1分米的正方形。小组讨论下,边长可以是几分米呢?(学生操作)
(2)交流
A、交流边长是“4” 为什么?→你们觉得行吗?→铺满
B、交流边长是“2” 出示一个角→你觉得长边、短边可以分别铺几块呢?→铺满
C、交流边长是“1” 铺一个角→你觉得长边、短边可以分别铺几块?→铺满
二、探究新知
1、认识公因数和最大公因数
(1)讨论交流
还有没有别的铺法?边长是3分米的地砖行吗?为什么?边长是5分米呢?
(宽边虽然可以铺整数块,但长边不行,会多出来。16÷5,12÷5都有余数,得到的不是整数,而题目要求是整块的)
(2)抽象公因数概念
我们发现边长1、2、4分米的地砖能铺满,而且是整数块,其它的都不行。那“1、2、4”与16和12到底有着什么特殊关系呢?
(1、2、4不仅是16的因数又是12的.因数。1、2、4是12和16的公因数)
同意吗?(能听懂他的意思吗?说的是什么?)
那我们就用以前的方法找找16、12的因数。
16的因数有:1、2、4、8、16
12的因数有:1、2、3、4、6、12
你发现什么?
(我发现1、2、4既是12的因数又是16的因数。)能不能简单的说说,它们是12和6的什么数吗?
(1、2、4是12和16公有的因数,1、2、4是12和16的公因数) 板书“公因数”
说能说一说什么是公因数
几个数共有的因数,就是这几个数的公因数。
那16和12的公因数有:1、2、4。
(3)用集合圈表示
我们可以用集合圈来表示两个数的公因数
(点击课件出示两独立集合圈)
这集合圈我们可以看成是16的因数,这一个集合圈我们可以看成是12的因数(课件动态显示两集合圈移动形成交集)
现在中间的表示什么呢?应该填?(生说师点击课件)
那这圈里的(指左边、右边)填?表示?
(4)认识最大公因数
如果凌老师想用最少的块数铺好地面,可以选择边长是几分米的地砖?
你是怎么想的?
(从公因数中找最大的。边长大的话占地面积就要大,铺的块数就要少)
实际上这4就是16和12的最大公因数,板书“最大公因数”
16和12的最大公因数是4
2、运用新知识,解决“老”问题
如果现在让我们考虑“可以选择边长是几分米的地砖”,我们可以直接?(写因数,找公因数)
那如果解决“边长最大是几分米”呢?(最大公因数)
三、合作交流、探索方法
大家刚才帮助凌老师解决边长可以几分米时,先找两个数的因数、然后圈出两个数的公因数,再找最大的公因数,就是我们求最大公因数的一般方法。会求两个数的最大公因数吗?
求最大公因数:18和27 15和10 两生板书
交流反馈。
想想看,还有没有更简单的方法呢?
如果我指找出一个数的因数,你能找出两个数的最大公因数吗?现在只找出18的因数,你能找到18和27的最大公因数吗?
“先找小的数18的因数,再看哪些是27的因数”
那如果只找了27的因数呢?
“先找27的因数,再看哪些是18的因数”
你能找出10和15的最大公因数吗?
这些方法实际都是属于列举法,在解决问题时你可以选择自己喜欢的方法。
四、巩固练习、总结提升
1、找出下列每组数的最大公因数
4和8 6和18 1和7 8和9
2、小游戏
(1)找同桌学号的最大公因数
你们是怎么找的?
(2)凌老师上学的时候学号是36号,与我的同桌学号最大公因数是12。你知道我的同桌是几号吗?
你是怎么想的?
当时我们班级人数不到60人,我同桌的学号有6个因数。现在你知道他到底是几号吗?
五年级教学设计《最大公因数》 篇5
教学内容
《最大公因数》是人教版第十册第二单元第四节的内容,教材第80到81页的内容及第82页练习十五的第3题。
设计思路
这个内容被安排在人教版第十册“分数的意义和性质”这个单元内,是学生已经理解和掌握因数的含义初步学会找一个数的因数,知道一个数因数的特点的基础上进行教学的,这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和分数四则运算的基础,对于学生的后续学习和发展,具有举足轻重的用。
教学目标
1、使学生理解两个数的公因数和最大公因数的意义。
2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3、培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。
4、培养学生抽象、概括的能力。
重点难点
1、理解公因数和最大公因数的意义。
2、掌握求两个数的最大公因数的方法。
教具准备
多媒体课件、卡片
教学过程
一、导入
1、学校买回12棵风景树,现在要栽种起来,栽种时行数不限,但每行栽种的数目相等,可以怎么栽种?16棵呢?
2、分别写出16和12的所有因数。
二、教学实施
1、老师用多媒体课件演示集合图。
指出 :1,2,4是16 和12公有的因数,叫做他们的公因数。
其中,4是最大的公因数,叫做他们的最大公因数。
2、完成教材第80页的“做一做”
先让学生独立思考,再让拿卡片的同学快速站一站,那几个数站在左边,那几个数站在右边,那几个数站在中间,最后集体订正。
3、出示例2。怎样求18和27的最大公因数?
(1) 学生先独立思考,用自己想到的方法试着找出18和27的最大公因数。
(2) 小组讨论,互相启发,再在全班交流。
(3) 老师用多媒体课件和板书演示方法
方法一 :先分别写出18和27的因数,再圈出公有的因数,从中找到最大公因数。
方法二 :先找出18的因数,再看18的因数中有哪些是27的因数,从中找最大。
18的因数有:① ,2 ,③ ,6 ,⑨ ,18
方法三 :先找出27的因数,再看27的因数中有哪些是18的因数,从中找最大。
27的因数有:①,③,⑨,27
方法四 :先写出18的因数1 ,2 ,3 ,6 ,9 ,18。然后从大到小依次看是不是27的因数 ,第一个数9是27的因数,所以9是18和27的最大公因数。
4、完成教材第81页的“做一做”。
学生先独立完成,独立观察,每组数有什么特点,再进行交流。
小结:求两个数最大公因数有哪些特殊情况?
⑴ 当两个数成倍数关系时,较小的数就是他们的最大公因数。
⑵ 当两个数只有公因数1时,他们的最大公因数是1.。
三、课堂练习设计(多媒体课件出示)
选出正确答案的编号填在括号里
1、9和16的最大公因数是( )
A . 1 B. 3 C . 4 D. 9
2、16和48的最大公因数是()
A . 4 B. 6 C . 8 D. 16
3、甲数是乙数的倍数,甲乙两数的最大公因数是( )
A .1 B. 甲数C . 乙数D. 甲、乙两数的积
四、课堂小结
通过本节课的学习,我们主要认识了公因数、最大公因数的.意义;掌握了找两个数的最大公因数的方法:找两个数的最大公因数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找出最大的公因数;也可以先找到一个数的因数,再从大到小看看那个数是另一个数的因数,从而找到最大公因数。
五、留下疑问
有三根小棒,分别长10㎝,16㎝,48㎝。要把他们都结成同样长的小棒,步许剩余,每根小棒最长能有多少厘米?
六、课堂作业设计
教材82页第2题、第5题
板书设计
最大公因数
例2:怎样求18和27的最大公因数?
18的因数有:1 ,2 ,3 ,6 ,9 ,18
27的因数有:1 ,3 , 9 ,27
18和27的公因数有:1 ,3 , 9
18和27的最大公因数是9
【五年级教学设计《最大公因数》】相关文章:
最大的书教学设计07-29
最大的“书”教学设计08-12
《最大的麦穗》教学设计12-28
《公因数和最大公因数》苏教版小学五年级下册数学教案05-03
最大的书优秀的教学设计11-01
关于最大的书教学设计09-28
最大的书教学设计范本07-21
小学语文《最大的书》教学设计07-10
小学二年语文下册教学设计:最大的书10-09
最大的书教学反思08-23