- 相关推荐
数学《比例的认识》教学设计(通用5篇)
导语:能通过化简比或求比值判断两个比能否组成比例,会用两种形式表示比例《比例的认识》这一课堂的学习目标。下面我们看看关于它的教学设计吧。
数学《比例的认识》教学设计 篇1
【教学目标】
1.知识技能
结合“图片像不像”“调制蜂蜜水”等情境,找到相等的比,理解比例的意义,认识各部分名称,能通过化简比或求比值判断两个比能否组成比例,会用两种形式表示比例。
2.数学思考与问题解决
经历自学和合作的过程,体验学习的快乐。
3.情感态度
培养学生自主参与的意识,培养学生观察、分析、概括的能力。
【教学重点】
通过情境理解比例的意义,通过求比值或化简比判断两个比是否能组成比例。
1.教学难点
通过求比值或化简比判断两个比是否能组成比例,并正确的写出比例。
2.教法学法
讲授与自学相结合、自主学习法、合作学习法
【教学准备】
多媒体课件、学生自学卡
【教学过程】
一、回顾旧知,复习铺垫
1.复习学过的有关比的知识。
2.谈话引入新课。
二、引导探究,学习新知
1.教学比例的意义。
同学们还记得这些图吗?请联系比的知识,想一想怎样的两张图片像,怎样的两张图片不像?
你们能说出每幅图的长与宽的各是多少吗?请在学习卡上写下来。
写出长与宽的.比,并求出比值。完成学习卡的第一题。
2. 初步感知比例的意义。
(1)交流反馈。
(2)引出比例的意义,
因为这两个比的比值相等,所以我们可以写成一个等式,6:4=12:8,也可以写成6/4=12/8
师:像这样表示两个比相等的式子叫做比例。(板书:比例)
3.组织看书,认识名称
我们知道了比例的意义,那么,比例的各部分名称是什么呢?请大家自学16页的“认一认”,完成学习卡的第二题。
【设计意图:让学生自学比例的各部分名称,把学习的主动权还给他们,既培养了他们的自学能力,又处理好了讲授与自学的关系。】
4.利用新知,学以致用
师:在图上这五张图片的尺寸中,你还能找出哪些比来组成比例?
(小组讨论,交流汇报)
生汇报
【设计意图:通过教师系统的总结,传递给学生一个信号,考虑问题要多方位思考。】
5.内化意义,提高认识
(1)从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?
(2)要判断两个比能否组成比例,关键看什么?如果不能一眼看出两个比是不是相等,怎么办?”
6. 引申应用
学生自学数学书的16页的问题三。
7. 比较“比”和“比例”两个概念。
教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
8. 教学比例的基本性质
(1)教学比例各部分的名称。
教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书P17,看看什么叫比例的项、外项、内项。
指名让学生指出板书中的比例的外项、内项。
(2)教学比例的基本性质。
教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:
两个外项的积是80×5=400
两个内项的积是2×200=400
“你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×200“是不是所有的比例都是这样的呢?”让学生分组计算前面判断过的比例式。
通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来?
最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。
“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成:
“这个比例的外项是哪两个数呢?内项呢?”
“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?
学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。
三、巩固深化,拓展思维。
(题略)
四、全课小结,提高认识
通过这节课的学习,你们都有哪些收获?
数学《比例的认识》教学设计 篇2
信息窗1:运输大麦芽——比例的基本性质
教学内容:
义务教育课程标准实验教科书青岛版小学数学十二册第三单元信息窗一。
教材简析:
该信息窗呈现的是一个运输大麦芽的特写镜头,用表格出示了运输大麦芽的有关数据,目的是让学生根据这些数据提出数学问题。通过解决“运输量和运输次数的比各是多少?它们有什么关系?”这两个问题,学习比例的意义。本信息窗共有3个红点。第一个红点:比例的意义。第二个红点:比例的基本性质。第三个红点:解比例。
教学目标:
1.在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
2.在探索比例的意义和基本性质的过程中进一步发展合情推理能力。
3.通过自主学习,让学生经历探究的过程,体验成功的快乐。
第1课时
教学过程:
一、创设情境,提出问题。
谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学(出示情境图)。
出世课件:这是一辆货车正在运输啤酒的主要生产原料——大麦芽。
这是它两天的运输情况:
一辆货车运输大麦芽情况
第一天第二天
运输次数24
运输量(吨)1632
根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。
谈话:谁来交流?跟大家说一下你的问题是什么?
学生可能出现以下的问题:
货车第一天的运输量与运输次数的比是多少?
货车第二天的运输量与运输次数的比是多少?(32:4)
货车第二天的运输量与第一天运输量的比是多少?(32:16)
(师根据学生的回答,将答案一一贴于黑板)
2:16;4:32;16:2;32:4;
16:32;2:4;32:16;4:2。
二、自主探究、获取新知:
1、认识比例及各部分名称。
谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16:2;32:4)看能发现什么?(学生会发现比值相等)
思考:这个比值所表示的实际意义是什么?(每次的运输量)
既然它们的比值相等,那我们可以用什么符号将两个比连接起来?
学生用等号连接,并请学生把这个式子读一下。
试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)
介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。
学生先把2:16=4:32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。
自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)
2.判断下面每组中两个比能否组成比例?
1/3∶1/4和12∶916∶2和32∶47∶4和5∶380∶2和200∶5
让学生根据比例的意义进行判断,教师结合回答板书:
1/3∶1/4=12∶916∶2=32∶47∶4≠5∶380∶2=200∶5
3.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?
那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!
4、学生先独立思考,再小组交流,探究规律。
出示研究方案:
①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。
②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。
③通过以上研究,你发现了什么?
5、全班交流。
(1)哪个小组愿意将你们的发现与大家分享?
(2)还有其他发现吗?
(3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?
6、验证发现,共享成功。
师:对,举例验证,这可是一种非常好的.数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)
7、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。
8、比例的基本性质的应用
(1)比例的基本性质有什么应用?
(2)试一试:40:2=60:3
a、先假设这两个比能组成比例
b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。
数学《比例的认识》教学设计 篇3
教学目的:
1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
2、通过合作交流、尝试练习,提高学生运用比例的基本性质解比例的能力。
3、培养学生的知识迁移的能力,增强学生的合作意识。
教学重点:使学生掌握解比例的方法,学会解比例。
教学难点:引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。
教学过程:
一、回顾旧知,复习铺垫
1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
2、判断下面每组中的两个比是否能组成比例?为什么?
6:3和8:4
3、这节课我们继续学习有关比例的知识,学习解比例。(板书课题)
二、引导探索,学习新知
1、什么叫解比例?
我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。
2、教学例2。
(1)把未知项设为X。解:设这座模型的高是X米。
(2)根据比例的意义列出比例:X:320=1:10
(3)让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。
根据比例的基本性质可以把它变成什么形式?3x=8×15。
这变成了什么?(方程。)
教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。
(4)学生说,教师板书解比例的过程。
教师:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。
3、教学例3。
出示例3:解比例=
提问:“这个比例与例2有什么不同?”(这个比例是分数形式。)
这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?
学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.5×6
让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。
4、解比例的过程。
刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的.基本性质把比例变成方程。)
变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)
从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)
5、p35“做一做”。学生独立解答,订正时,让学生说说是怎么做的。
三、巩固深化,拓展思维
p37第7题。
四、全课,提高认识
什么叫解比例?解比例的根据是什么?解比例的书写格式应注意什么?
五、课堂练习,辅助消化
p37~38第8~11题。
六、课外补充,拓展延伸
1、p38第12、13题。
2、4:8=12:24,如果将第二项减少1,要使比例成立,则第四项减少多少?
3、把两个比值都是的比组成比例,已知比例的两个内项都是15,请分别求出这个比例的两个外项,并写出比例。
数学《比例的认识》教学设计 篇4
教学目标:
培养学生的观察能力、判断能力。
学法引导:
引导学生通过观察、讨论、计算、探究、验证等方法研究比例的意义和比例的基本性质。
教学重点:
比例的意义和基本性质。
教学难点:
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
教学过程:
一、回顾旧知,复习铺垫
同学们,今天数学课上有很多有趣的问题等待你们来探索和发现,希望大家都能有收获。大家有没有信心?
1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把学生举的例子板书出来
2、老师也准备了几个比,想让同学们求出他们的比值,并根据比值分类。
2:3 4.5:2.7 10:6
80:4 4:6 10:1/2
提问:你是怎样分类的?
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:两个比相等4.5:2.7=10:6 12:16=3/5:4/5 80:4 =10:1/2)像这样的式子叫做比例。这就是这节课我们要学习的内容。(板书课题:比例的意义)
二、引导探究,学习新知
1、教学比例的意义。
(1)教学例题。
先出示教材上的四幅图,请同学说说图的内容。找一找四幅图中有什么共同的东西。再出示四面国旗长、宽的尺寸。
师:选择其中两面国旗(例如操场和教室的国旗),请同学们分别写出它们长与宽的比,并求出比值。
提问:根据求出的比值,你发现了什么?(两个比的比值相等)
教师边总结边板书:因为这两个比的比值相等,所以我们也可以写成一个等式
2.4∶1.6 = 60∶40 像这样由两个相等的比组成的式子我们把它叫做比例。
师:在图上这四面国旗的尺寸中,还能找出哪些比来组成比例?
比例也可以写成分数形式:4.5/2.7= 10/6请同学们很快地把黑板上我们写出的比例,改写成分数形式。
(2)引导概括比例的意义。
同学们,老师刚才写出的这些式子叫做比例,那么谁能用一句话把比例的意义总结出来呢?(根据学生的回答板书比例的意义。)
(3)判断。举一个反例:那么2:3和6:4能组成比例吗?为什么?
“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?(看两个比的比值是否相等)如果不能一眼看出两个比是不是相等的,怎么办?”(根据比例的意义去判断)
根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比比值求出来以后再看。
(4)比较“比”和“比例”两个概念。
教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
(5)反馈训练
用手势判断下面卡片上的两个比能不能组成比例。
6:3和12:6 35:7和45:9
20:5和16:8 0.8:0.4和4:2
2、教学比例的基本性质。
(1)自学课本,了解比例各部分的名称,理解各部分的名称与各项在比例中的位置有关。
( 2 )检查自学情况:指名说出黑板上各比例的内外项。
(3)探究比例的基本性质。
师:在比例的内外项之间,存在着一个有趣的特性(比例的基本性质),大家想不想研究?(板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书
两个外项的积是4.5×6=27
两个内项的积是2.7×10=27
“你发现了什么?”(两个外项的积等于两个内项的积。)板书:4.5×6=2.7×10
(4)计算验证,达成共识。
师:“是不是所有的比例都有这样的性质呢?”让学生分组计算判断前面的比例式,发现所有的比例式都有这个共同的`规律。
(5)引导小结比例的基本性质。
师:通过计算,大家,谁能用一句话把这个规律概括出来?
教师归纳并板书:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。
师:“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着4.5/2.7=10/6) “这个比例的外项是哪两个数呢?内项呢?”
学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。
(6)判断。前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。
反馈训练:应用比例的基本性质判断3:4和6:8能不能组成比例。
三、巩固深化,拓展思维。
(一)判断
1.两个比可以组成一个比例。 ( )
2.比和比例都是表示两个数的倍数关系。 ( )
3.8:2 和1:4能组成比例。 ( )
(二)、用你喜欢的方式,判断下面那组中的两个比可以组成比例。把组成的比例写出来。
(1) 6:9和 9:12 (2)14:2 和 7:1
(3) 0.5:0 .2和 5:2 (4)0.8:0.4和0.3:0.6
(三)填空
(1)一个比例的两个外项互为倒数,则两个内项的积是( ),如果其中一个内项是2/3,则另一个内项是(),如果一个比例中,两个外项分别是7和8,那么两个内项的和一定是()。
(2)如果2:3=8:12,那么,()x()=()x()。
(3)写出比值是4的两个比是()、(),组成比例是()。
(4)如果5a=3b,那么,a:b=():( )
(四)下面的四个数可以组成比例吗?如果能,能组成几个?把组成的比例写出来。
2 、3 、4和6
拓展题:猜猜括号里可以填几?
5:2=10:( ) 2:7=( ):0.7 1.2:2.5=( ):25
四、全课小结,提高认识
通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
五、布置作业。
练习六2、3、5
数学《比例的认识》教学设计 篇5
一、学生知识状况分析
学生在本章前两课时的学习中,通过对相似图形的直观感知,体会到可以用对应线段长度的比来描述两个形状相同的平面图形的大小关系。从而认识了线段的比,成比例线段。
二、教学任务分析
本节课依旧采用前两节在方格纸中探究的方式,引导学生得出平行线分线段成比例及其推论。平行线分线段成比例定理是研究相似形的最重要和最基本的理论,是《课程标准》图形的性质及其证明中列出的九个基本事实之一。在知识技能方面,要求学生理解并掌握平行线分线段成比例定理及其推论,并会灵活应用。学生经历运用平行线分线段成比例及其推论解决问题的过程,在观察、计算、讨论、推理等活动获取知识。让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系。
教学目标:
(一)知识目标
理解并掌握平行线分线段成比例的基本事实及其推论,并会灵活应用。
(二)能力目标
通过应用,培养识图能力和推理论证能力。
(三)情感与价值观目标
(1)、培养学生积极的思考、动手、观察的能力,使学生感悟几何知识在生活中的价值。
(2)、在进行探索的活动过程中发展学生的探索发现归纳意识并养成合作交流的习惯。
教学重点:平行线分线段成比例定理和推论及其应用。
教学难点:平行线分线段成比例定理及推论的灵活应用,平行线分线段成比例定理的`变式。
三、教学过程分析
本节课设计了五个教学环节:第一环节:创设情景,引入新课;第二环节:探索发现平行线分线段成比例定理及其推论;第三环节:平行线分线段成比例定理及其推论的简单应用;第四环节:课堂小结;第五环节:布置作业.
一:创设情景,引入新课
下图是一架梯子的示意图,由生活常识可以知道:AA1,BB1,CC1,DD1互相平行,且若AB=BC,你能猜想出什么结果呢?
通过一个生活中的实例激发学生探究的欲望,从而紧扣学生的好奇心,引入新课。
三条距离不相等的平行线截两条直线会有什么结果?
二:探索发现平行线分线段成比例定理
探究活动一:
1.内容:如图(1)小方格的边长都是1,直线abc,分别交直线m,n于A1,A2,A3,B1,B2,B3。
(1)计算你有什么发现?
(2)上面我们探究的是在方格纸上的特殊情况,
如果不在方格纸上上面的结论还成立吗?
(3)在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗?(用几何画板演示)
归纳:平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例;
目的:让学生通过观察、度量、计算、猜测、验证、推理与交流等数学活动,达到对平行线分线段成比例定理的意会、感悟。
效果:学生在以前的学习中,尤其是本章前两节的探究也是通过表格中的多边形来完成的。所以学生有种熟悉感,并不感到困难。通过几何画板的演示,对这个基本事实进行了“淡化”处理——让学生在操作演示中直接给出基本事实。
2.议一议:
内容:教师提问:(1)如何理解“对应线段”?
(2)平行线分线段成比例定理的符号语言如何表示?
(3)“对应线段”成比例都有哪些表达形式?
3.为了能够快捷而准确地得到比例线段,可以结合图形用形象化的语言对应找,如上/下=上/下上/全=上/全下/全=下/全左/右=左/右
目的:让学生在探究得出结论的基础上,对平行线分线段成比例定理的有进一步的理解。并掌握定理的符号语言,进一步发展推理能力。
效果:学生从几何直观上很容易找出“对应线段”。利用比例的性质写出成比例线段时,感觉结论很多,老师这时可以引导总结出成比例线段的特点,那就是都体现了“对应”二字。
4.灵活应用
例l1l2l3,AB=4,DE=3,EF=6.求BC的长
跟踪练习:课本30页练习1
三:探索发现平行线分线段成比例定理的推论
探究活动二:
1.继续使用几何画板,向左平移直线DF使点D和点A重合,再继续平移直线DF使点E和点B重合。在平移的过程中,对应线均无改变,上述比例线段仍成立,从而得出定理的推论
归纳:平行于三角形一边的直线与其他两边相交,截其他两边(或两边的延长线),所得的对应线段成比例。
2.议一议:(1)平行线分线段成比例定理推论的符号语言如何表示?
(2)这两个图形的形状像什么字母?这是什么形状的数学模型?
(3)互相说一说图中的比例线段?
3.灵活运用:
例:已知,点E为平行四边形ABCD的边CD的延长线上的一点,连接BE,交AC于点O,交AD于点F。求证
四:课堂小结
1.定理名称:2.文字语言:3.图形语言:4.符号语言:5.模型语言:
五:作业:
1、教材P31/随堂练习2.课时练P23/知识点二
教学反思:
本节的难点是平行线分线段成比例定理.平行线分线段成比例定理变式较多,学生在找对应线段时常常出现错误;另外在研究平行线分线段成比例时,常用到代数中列方程的方法,利用已知比例式或等式列出关于未知数的方程,求出未知数,这种运用代数方法研究几何问题,学生接触不多,也常常出现错误.
在授课过程中要根据学生的个体差异,注意因材施教、分层教学,在教学中结合课本“想一想”、“议一议”、“做一做”等教学环节调动学生的潜能,为每一位学生创设施展才能的空间,让学生学得轻松、愉快,培养学生的成就感,使每一位学生都能获得不同程度的成功。同时把学生的活动贯穿于教学的整体过程中,提供学生学习合作、交流、探索、归纳的机会,使学生最大限度的动手、动口、动脑、同伴互助,让学生通过实际感悟平行线分线段成比例定理及其推论的区别与联系。
【数学《比例的认识》教学设计】相关文章:
数学角的认识教学设计10-06
认识直角数学教学设计10-06
比与比例教学设计11-27
数学认识图形的教学设计10-06
比例的意义教学设计07-26
毫米分米的认识数学教学设计10-06
中班数学认识宽窄的教学设计10-06
数学课认识物体的教学设计10-06
小学数学《分数的初步认识》教学设计10-06