鸡兔同笼教学设计
鸡兔同笼问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?
鸡兔同笼教学设计篇一:
教材分析:
本节是尝试与猜测活动之一。本活动的目的是通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。在“鸡兔同笼”的活动中,通过列表方法解决鸡与兔的数量问题。
教学目标:
1、通过对日常生活中现象的观察和思考,发现一些特殊的规律。
2、从不同角度分析,掌握列表解题的策略与方法。
3、培养学生分析的能力,初步渗透假设的数学思想。
教学重难点:
从不同角度分析,掌握列表解题的策略与方法。
教具准备:
多媒体课件
教学过程:
一、激趣导入
1、引导学生发现鸡和兔的异同点,学生得出鸡和兔都有一个头,鸡有两条腿,兔有四条腿。
2、通过练习发现问题。
出示多媒体课件:
一只公鸡( )条腿,两只公鸡( )条腿,五只公鸡( )条腿。
一只兔子( )条腿,两只兔子( )条腿,五只兔子( )条腿。
鸡兔共五只,腿有( )条。
3、得出关系式:鸡的数量×2+兔的数量×4=腿的数量。
质疑:如果知道了腿的总数能知道鸡兔各几只吗?
4、引出课题:早在1500多年前,我国古代的数学家就在《孙子算经》中提出了这样有意思的题目,今天我们就一起来研究。(板书:鸡兔同笼)
二、开展活动,探究规律。
1、课件出示题目:笼中鸡兔共8只,腿有22条,鸡兔各几只?
学生猜测鸡兔各几只,按顺序整理所有可能性。
学生根据总结出的关系式,计算找出正确答案。
学生汇报正确答案是鸡5只,兔3只。
小结:像这样把所有情况一一列举出来的方法叫逐一列表法。(板书)
2、质疑:这个方法好不好?
学生感受这个方法要一一列举,比较麻烦。
下面就利用简单的数据总结规律,运用到复杂的情况中。
3、请同学们观察:你发现了什么规律?
同桌互相讨论。
生得出结论:鸡增加1只,同时兔减少1只,腿减少2条。
鸡减少1只,同时兔增加1只,腿增加2条。
腿增加和减少于兔保持一致。
4、游戏练习:
鸡增加2只,同时兔减少2只,腿( )。
鸡减少5只,同时兔增加5只,腿( )。
生得出:鸡兔每对换一次,腿数增加/减少两条。
三、利用规律,实题操作。
利用总结的规律,做一道数目稍大的题,不用逐一列表,试试看。
课件出示:鸡兔同笼,有10个头,28条腿,鸡、兔各有多少只?
生利用规律进行练习。
生汇报,根据汇报总结出取中列表法和跳跃列表法。
四、练习
练习熟练运用取中列表法和跳跃列表法。
1、鸡兔同笼,有20个头,56条腿, 鸡、兔各有多少只?
从鸡兔同笼问题中取得数学学习的方法,这里的鸡兔不仅仅代表鸡和兔,运用所学的方法可以解决生活中类似的问题。
2、停车场里停了三轮车和小汽车共11辆,总共有40个轮子,问三轮车和小汽车各有几辆?
这道题与鸡兔同笼问题有什么联系?
生找出两者的异同点,进行练习。
五、课外延伸
与大家分享小知识。
“鸡兔同笼”是一类中国有名的算术题,最早出现在《孙子算经》中。此书约成书于四、五世纪,作者生平和编写年代都不清楚。先传版本的《孙子算经》共三卷。卷下31题,可谓是后世“鸡兔同笼”的始祖,后来传到日本,变成“龟鹤算”。书中是这样叙述的:“今有鸡兔同笼,上有35头,下有九十四足,问鸡兔各几何?”
许许多多数学应用题都可以转化成这类问题来解决,或者用解决“鸡兔同笼”问题的解法来解决。
鸡兔同笼教学设计篇二:
[教材简析]
本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一列表法、跳跃式列表法、取中列表法等来解决问题。学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
[设计理念]
“鸡兔同笼”是我国古代数学的经典趣题,教材借助这个问题向学生提供了有趣、富有挑战性的学习素材,旨在让学生通过合作交流,应用假设法进行探究学习,积累解决问题的经验,掌握解决问题的策略。
[教学目标]
1知识与技能:学会用不同方法解答“鸡兔同笼问题”,比较各种列举法的特点,并让学生体会怎样列举更简便。
2过程与方法:运用假设法通过合作交流探索多种方法解决鸡兔同笼问题并学会用这种方法解决生活中类似的实际问题。
3情感态度与价值观:使学生初步认识“鸡兔同笼”的数学趣题,了解与此有关的数学史,学习我国传统的数学文化。
[教学重点]
借助“鸡兔同笼”这个载体让学生经历列表、尝试和不断调整的过程,从中体会出解决问题的一般策略——假设列表法。
[教学难点]
解决此类问题的调整策略既:在运用“跳跃列举”中的调整幅度的大小,和在使用“居中列举”后巧妙的运用“跳跃列举”。
[教学手段]
1、教学方法
在学生理解题意的基础上通过教师引导,学生交流相结合,适时补充游戏呈现、相关影像呈现或其他资料,以丰富学生对题意的理解认识。
2、学习方法
在教师的引导下,学生通过游戏、交流等方法探索解决问题的途径。
教学准备
①学生:每人准备4列6行空白表格5张备用。
②教师:制作《鸡兔同笼》PPT课件。
[媒体说明]
《鸡兔同笼》PPT课件。
[教学时间]
一课时
[教学过程]
一、导入。
一、游戏激趣
师:同学们,你们喜欢小动物吗?
师:请交流一下你喜欢的动物。
师:谁上台来扮演兔与鸡。(主要表现清楚它有几条腿,四条腿的可借助双手)
师:三头六足。学生随着教师的要求上台扮演。
师:有几只鸡?几只兔?(三只全是鸡,没有兔)
师: 3头8足
师:有几只鸡?几只兔?(2只鸡,一只兔)
师:5头10足、
师:有几只鸡?几只兔?(5只全是鸡)
8头24足。(变换题型)
师:有几只鸡?几只兔?(4只鸡,4只兔)
师:其实上述游戏蕴含着一类数学问题——“鸡兔同笼”问题。
师板书课题:“鸡兔同笼”
二、尝试探究
师:“鸡兔同笼”问题是我国古代三大趣题之一,记载于《孙子算经》一书中,距今约有1500年。用课件出示:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”
师:这道题的意思就是:“笼子里有若干鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡兔各有几只?”同学们,这个问题你能解决吗?(给学生思考时间)
师:要解决这个问题,我们可以从简单的问题入手。课件出示:“笼子里有若干鸡和兔。从上面数,有8个头,从下面数,有26只脚,鸡兔各有几只?”请同学们尝试做这道题。(给学生时间)学生尝试后做交流展示:
1、(在讲台上边画图边讲解自己的算法):我是用画图的方法等出来的。1只兔子有4只脚,1只鸡有2只脚。而它们的头一共有8只,所以我就尝试着画。结果尝试的结果是,兔子5只,鸡3只。(画图法,不准备课件,学生直接画在黑板上。)
师:很好,谁还有其它的方法。(学生可能会用列表)
2、师:我们用列表例举法来做一做。我们可以从有一只鸡开始试
有一只鸡,那就是7兔,共有腿30条,鸡有2只,兔有6只,共有腿28条
一只一只 的试下去,把试的结果列在表上。
师生共同探究鸡、兔的头数与脚的总数的关系,得出结论。课件出示
师:我们通过列举,也就是尝试的办法,得出了鸡有5只,兔有3只的答案。(列举法)
3 同学们用画图和列表举例法解决了这个问题大家比较一下,用列表举例法和用画图法比较,哪个更简便一些?学生通过比较,得出了列表法简单。那我们用列表法来解决下面这个问题。课件出示:鸡兔同笼,有20个头,54条腿,鸡兔各多少只“笼子里有若干鸡和兔。从上面数,有20个头,从下面数,有54只脚,鸡兔各有几只??
列表举例之前,请同学思考一下,我们分析一下再开始列表我们从有一只鸡开始以只一只的试,逐一的列表, 同学们分析一下我们在列表时一个一个的试是不是太麻烦了,有没有更快的方法。我们可不可以从一只一只试改成别的。给学生思考的时间。然后再让同学们说一说。
(1)你是怎么列的?、
学生可能用跳跃可能用居中。
我们可以假设鸡和兔各占一半,再列表。鸡和兔共有20只,各占一半是十只,我们从有十只鸡开试。在列表中再根据实际情况确定举例的方向。我们把这种方法叫做居中列表法.
师总结:我们可以假设各占一半再列表,
一学生上黑板演算。其它同学独立完成。
同学们得出结论:13只鸡,七只兔。同学们运用了居中列表法解决了这一鸡兔同笼问题,接下来同学们试着用这种方法来解决
2、取中列表法
你怎么列的?
小结:这种方法通过假设成鸡兔各占一半,也可以减少调整的次数。
3、跳跃式列表法
(1)你怎么列?2个2个调整
(2)你怎么列的?5个5个调整
有什么问题么?
前面你一直都是在减少兔子的只数,把一些兔换成鸡,为什么调整到鸡15只,兔5只的时候, 兔子数又要增加,又把鸡换成了兔呢?
从这里我们可以判断,兔子数应该在几和几之间?
小结:像刚才这样,几只几只地调整,可以减少我们调整的次数。但每一次调整我们都要和实际的腿数去比较。
5、小结
不管你用的是哪种方法,我们都要先假设出一种情况,再和实际的腿数去比较。如果腿数太多,就要把一些兔换成鸡,如果腿数少了,就要把一些鸡换成兔。
三、巩固练习,顺利迁移。
1、师:请学生们用自己喜欢的方法解决《孙子算经》中的“鸡兔同笼”问题。
一学生上黑板演算。其它同学独立完成。
23只鸡12.
那我们再来练一练。鸡兔同笼,有17各头,42条腿,鸡兔各有多少只。
2小明的储蓄罐里有一角和五角的硬币共27枚,价值5.1元,一角和五角的硬币各有多少枚?
3、一盆月季花6元,一盆玫瑰花7元 ,学校花110元共买了17盆花。月季花和玫瑰花各多少盆?
鸡兔同笼教学设计篇三:
教学内容:北师大版五年级上册第80、81页。
教材分析:“鸡兔同笼”问题是我国古代的一道数学趣题,最早出现在《孙子算经》中。,它集题型的趣味性、解法的多样性、应用的广泛性于一体,是实施开放式教学的好题材。
教材中要求掌握3种解题方法(逐一列表法、跳跃列表法、取中列表法),要求学生在教师的指导下,通过小组合作,运用假设举例列表等方法,寻找解决的结果。教学中,要求教师不宜补充其他解法,以免分散学生的注意力。
学情分析:五年级学生已经学了一些用列表法解决问题的策略,?还有一些学生在兴趣小组、奥数等的学习中已经学过“鸡兔同笼”问题。学生的程度参差不齐。学生的思维活跃?敢想、敢说,有一定的小组合作经验。
教学目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用列表、假设的方法解决“鸡兔同笼”问题,通过列表尝试和不断调整的过程,从中体会解决问题的一般策略—列表,让学生学会从不同角度分析,掌握解题的策略与方法。
3、在解决问题的过程中,培养学生的迁移思维能力。合作、交流等学习品质和能力。
教学重点:让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略—列表。
教学难点:运用学到的解题策略解决生活中的实际问题。
教学过程:
一、创设情境
(出示儿歌)鸡兔同笼不知数,三十六头笼中露,数数脚有一百只,几只鸡来几只兔?
师:这就是我国民间著名的三大趣题之一,最早记载在1500年前的数学名著《孙子算经》中(课件出示古书动画打开书出现原题),原题是这样的,请看:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?谁知道,这是一个什么问题?(鸡兔同笼问题,课件出示鸡兔同笼情境图)这节课我们就来研究中国历史上著名的数学趣题 “鸡兔同笼”。(板书:鸡兔同笼)
师:谁能用自己的话说说这道题的意思?(鸡兔同笼,上面数有35个头,从下面数共有94条腿,问鸡、兔各有几只?)
师:这道古代趣题你能解决吗?我们还是化繁为简,从简单入手吧!
二、探索新知
出示例题:鸡兔同笼,有20个头,54条腿,鸡兔个有几只?
1、 明确问题,独立思考
通过读题你获得了那些数学信息?这道题里还有隐藏的数学信息吗? 同学们先来猜一猜鸡、兔可能各有多少只?(找一两个同学猜测)
到底是几只鸡几只兔呢?
2、小组合作交流。
师:小组讨论,要解决这个问题可以用什么方法?
师:把你们的方法写在纸上。可以使用桌子上老师提供的表格
文本预览:
师:哪个小组说说你们的想法?
小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)先假设有1只鸡,19只兔子,脚就有78条。脚太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。
师:腿多了,减少谁的只数,增加谁的只数?
师:你们是怎么想到这种方法的?
生:在旅游费用的租车、租船中,我们就是用列表的方法找出答案,这题的类型跟那差不多,我们想,也可以用这种尝试列表的方法找出答案。
师:这种列表法有什么特点?
生:鸡一只一只地增加,兔子一只一只地减少。
师:谁能给这种列表法取个名字?
生:逐一列表法。
师:还有哪些小组采用不同的列表法?
小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从1只鸡,19只兔直接跳到6只鸡,14只兔。最后也得到了13只鸡,7只兔。
师:腿的总条数多了或少了你们组是怎么调整的,也就是你们的调整策略是什么? 生:腿多了,我们减少兔子的只数,腿少了我们增加兔子的只数。
师:我们也给这种方法取个名字,好吗?
生:跳跃列表法。
小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比较简便。
师:你能给这种方法取个名字吗?
生:取中列表法
师(展示台展示三张表格)同学们三张表格都能很好地求出鸡、兔的只数,哪种方法最捷径。
生1:取中列表法直取中间数减少了“试”的过程能更简便、快捷地找到答案。 生2:我认为应该三种列表法结合使用,先用取中列表法减少一半的猜测数字,再用跳跃列表法加快猜测的速度,在接近答案时用 逐一列表法。
生3::那是数字大时使用,数字小时,还是使用逐一列表法好,它答案不会重复、不会遗漏。
小组4:(展示台展示)我们组认为还是采用列方程法最简便、快捷,先假设鸡的只数为ⅹ,兔子的只数就为20-x。
列式是:2x+4(20-x)=54 解得x=13 兔子的只数是7.
师:你们小组的同学很聪明,但这种方法我们暂不讨论,有兴趣的同学,课后和老师一起向他们请教,好吗?
师:还有哪些组没有汇报?
小组5:我们组也是用列式法算出鸡、兔的只数(展示):假设全部是鸡 (54-20×2)÷(4-2)求出兔7只,鸡13只。
师:这种方法,我们也留在课后私下交流。
师:我们的祖先很聪明,为我们的祖先感到骄傲,其实老师也为你们感到骄傲,你们在这么短的时间内就想出了这么多解决问题的办法,你们很了不起!
四、方法应用,巩固新知
2过渡语:、“鸡兔同笼”问题传到日本,日本人称它为“龟鹤问题”,你认为“龟鹤问题”与“鸡兔同笼”问题有什么相似之处?
1、师:除了“龟鹤问题”与“鸡兔同笼”问题类似以外,我们在实际生活中还有很多类似的问题。(出示)学校举行乒乓球比赛,有单打和双打。12张乒乓球台上共有34人同时在打球。问:正在进行单打和双打的台子各有几张?
问:这题是否属于“鸡兔同笼”问题
2、师:我们班同学很聪明,会解“鸡兔同笼”类型的问题,那聪明的你,是否会出一道“鸡兔同笼”类型的题,考考其他组的同学呢?
3、(出示)一百个馒头,一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几人?
师:有兴趣的同学,课后思考这一趣题。
四、小结交流
今天这节课,我们跨越了1500多年的历史,即探讨了中国古代的数学名题,又解决了我们身边的一些数学问题。经过这节课,你有哪些收获?
【鸡兔同笼教学设计】相关文章:
鸡兔同笼的教学设计09-20
鸡兔同笼教学设计与反思09-14
《鸡兔同笼》数学教学设计10-25
《鸡兔同笼》优秀教学设计优秀05-24
鸡兔同笼教学设计(精选6篇)06-10
小学数学鸡兔同笼教学设计05-06
关于鸡兔同笼问题的教学设计06-10
中小学数学鸡兔同笼主题教学设计09-02
北师大尝试与猜测鸡兔同笼教学设计10-29
北师大版小学鸡兔同笼教学设计10-10