小学数学《分数与除法》优秀教学设计
《分数与除法教学》是人教新课标小学数学五年级下册课文,分数可以看成分子除以分母,除法中被除数可以看成是分子,除数可以看成是分母。下面是本文的教学设计。
小学数学《分数与除法》优秀教学设计 篇1
教学目标:
1.使学生理解两个整数相除的商可以用分数来表示。
2.使学生掌握分数与除法的关系。
3.培养学生的应用意识。
教学重难点:
1.理解归纳分数与除法的关系。
2.用除法的意义理解分数的意义。
教学准备:课件、圆片
教学过程:
一. 复习引入
师:同学们,上节课我们学习了分数的产生和意义。在进行测量、分物或计算时,往往不能正好得到整数的结果,这时,我们常用分数来表示。那么什么是分数呢?(学生回答分数的意义)
课件出示练习题:
(1)把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几?这道题把谁看作单位“1”?
(2)把9个香蕉平均分成3份,每份是这些香蕉的几分之几?每份有几个?
(3)把1包饼干平均分给2个人,每人分得(1/2 )包 。
引入:知识与知识之间存在着许多密切的关系,这节课我们来研究一下分数与除法之间的关系。(板书课题)
二.探究新知
课件出示习题:
(1)把18个蛋糕平均分给3个人,每个人分得多少个?(列式计算)
(2)把6个蛋糕平均分给3个人,每个人分得多少个?(列式计算)
师:这两道题都是我们学过的用除法来解决的问题,计算的都是把一个整体平均分成3份,求每份是多少。下面我们再来看一下这道题。
出示例1:把1个蛋糕平均分给3个人,每个人分得多少个?
师:这道题该怎样列式呢?(学生列式,师板书:1÷3)
师:1÷3表示什么意思?
生:1÷3表示把一个蛋糕平均分给3个人,求一个人分得多少。
师:好,这道题也是把一个整体平均分成3份,求一份是多少,也是平均分的问题,所以也要用除法来计算。那么,你知道每人分得多少个吗?
生: 1/3个。(师板书)
师:大家都认为是这样吗?(是)谁来说说你是怎么想的?
教师出示课件,学生边说边演示:我们把这个圆看作这个蛋糕,把它平均分成3份,每人得到其中的一份,也就是这个蛋糕的1/3 。
师:请大家看,每份都是1/3 ,每个人得到的是多少个蛋糕呢?
生:1/3 个。
师:在分物时,不能正好得到整数的结果,我们就可以用分数来表示。所以每个人分得的蛋糕就是 个。
教师说明:1÷3表示把一个蛋糕平均分给3个人,求每人得到多少个,而我们通过演示知道了每人得到1/3个。所以1÷3的结果就是1/3。(板书“=”)(齐读算式)
师:一个蛋糕平均分给3个人,我们知道了每人分得1/3个,现在要分一些其它的物品,你会吗?(课件出示例2)
指名读题
师:谁能列出算式?
生:3÷4(师板书)
师:这道题是把一个整体平均分成4份,求每份是多少,也是用除法来计算的。究竟每人分得多少块月饼呢?老师为每个小组都准备了学具(3个圆片),现在请大家利用手中的学具一起动手分一分,看看到底每人分得多少块月饼。
小组操作,教师巡视指导。
师:大家都有了结论了,哪个小组的同学愿意来给大家说一说你们小组的结论是什么?
(小组边汇报,边演示)
小组1汇报:我们小组是一个一个分的。我们先把一个圆平均分成4份,每人得到其中的1份,也就是1/4块。
师:你能用一个式子表示一下吗?
小组1:1÷4=1/4块。
师:好。请接着汇报吧。
小组1:接下来,我们按照同样的方法分其他两个圆。最后每个人分到的是3个1/4块,也就是3/4块。
师:大家认为他们的方法可以吗?(可以)我们再来一起回忆一下他们的方法。(教师边叙述方法,边进行课件演示)
师:还有没有和这组方法不同的?
小组2汇报:我们小组是把3个圆叠放在一起,把它们一起平均分成4份,每人得到其中的1份,拼在一起就得到了3/4块。
师:(课件演示方法二)这种方法是把3块月饼放在一起,把它们看成一个整体,平均分成4份,每人得到了其中的一份,也就是3块月饼的1/4,拼在一起就是3/4块。
师:通过大家操作我们知道了每人得到了3/4块月饼(板书3/4块)。有些同学是一块一块分的,有些同学是3块一起分的,但这两种不同的方法都得到了3/4块,也就是说3÷4的结果就是3/4。
师:请大家看一看,今天这两道除法算式的结果都是什么数?(分数)请大家想一想,分数与除法有什么关系呢?
学生小组讨论
生:我们发现,被除数就是分子,除数就是分母。
师:你能试着表示出来吗?
生:被除数÷除数=被除数/除数(师板书)
师:如果用a来表示被除数,b表示除数,你能用字母来表示分数与除法之间的关系吗?
生1:a÷b=a/b(师板书)
生2:老师,我认为还要写上b≠0。
师:为什么b≠0?
生:因为b表示除数,除数不能为0。
生:分数的分母也不能等于0。
师:好。通过观察思考,我们知道了分数与除法存在着这样的关系(齐读分数与除法的关系)
师:我们知道,两个整数相除,商可以用分数来表示,反过来看看,分数能不能表示两个整数相除呢?
学生观察算式,思考
生:可以。比如3/4=3÷4。
课件出示,齐读:两个整数相除,商可以用分数来表示,要用除数作分母,被除数作分子.反之,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。
师:我们通过学习了解了分数与除法的联系,那么分数与除法有什么区别呢?
请学生观察黑板算式,和同学讨论。
学生汇报,教师总结:除法和我们学过的加法、减法、乘法一样,是一种运算;而分数是一种数,同时分数也可以表示两个数相除。
三.巩固练习
1.用分数表示下列算式的商
7÷13= 3÷11= 8÷5= 9÷16= m÷n=
2.试一试
( )÷7=4/7 1÷( )=1/3 7/9=( )÷9 5/8=( )÷( )
3.把1千克葡萄干平均装在2个袋子里,每袋重多少千克?平均装在3个袋子中呢?
4.填空(练习十二3题)
5.把5米长的绳子平均截成8段,每段长(5/8)米,每段绳子的长度是全长的(1/8)。
四.全课总结
小学数学《分数与除法》优秀教学设计 篇2
教学目标:
1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。
2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。
3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重难点:
重点:掌握分数与除法的关系,会用分数表示两个数相除的商。
难点:理解可以用分数表示两个数相除的商。
教学过程:
一、导入揭题。
1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的分数单位。
2、观察:5÷8=4÷9=这两道题能得到整数商吗?
3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。
二、探索新知
1、教学例1
(1)课件出示例1
把一个蛋糕平均分给3人,每人分得多少个?
(2)同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。
(3)汇报讨论结果
(4)观察这两种解法有什么联系?
2、教学例2、
把3个饼平均分给4个孩子,每个孩子分得多少个?
(1)平均分同样可以列式为:3÷4。
(2)小组合作探究:3÷4的商能不能用分数表示呢?
(3)通过进一步探究,你发现分数与除法有什么关系了吗?
师生共同小结:被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?
三、拓展应用
一个正方形的周长是64cm,它的边长是周长的几分之几?
四、总结
通过这节课的学习,你有什么收获?
五、作业布置
完成教材第50页"做一做"
小学数学《分数与除法》优秀教学设计 篇3
教学目标
1、结合具体情境观察比较,理解分数与除法的关系,会用分数来表示两数相除的商。
2、运用分数和除法的关系,探索假分数与带分数的互化方法,初步理解假分数与带分数互化的算理,会正确进行互化。
教学重点、难点
1、理解掌握分数与除法的关系。
2、会对假分数与带分数进行正确互化。
教学过程
活动一:创设情境,引导探索。
师出示例1:我想调查一下,最近那位同学要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?
师:同学们愿意帮xxx同学分一分蛋糕吗?
生:愿意!
师:出示蛋糕,接着出示例2:把一个蛋糕平均分给3个人,平均每人能分得多少?
师:这时,应该把什么看作单位“1”?
要把蛋糕平均分成几份?怎样列式?(指名口述算式)1÷3=
师:大家拿出练习本来计算这个商是多少?
生:3(1)
师:对了!那么上面的算式1÷3的商可以用分数1/3表示了。
即:1÷3=3(1)(个)
答:每人分得3(1) 个。
活动二:剪一间,拼一拼。
师:“六一”联欢的时候,我打算买3张非常好吃的'比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?
生:想!
师:出示例2 :把3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?
①议一议:这里应该把哪个量看作单位“1”的量?用什么方法分?有哪些分法?(让同学们充分考虑好后,说说自己的想法)[课件显示3张饼]
②剪一剪:下面我们用事先准备好的3个圆形表示这3张饼,请同学们以小组剪一剪,并把分好的四份摆在桌子上。[课件显示把3张饼分成了4份] ③拼一拼:分好后,请同学们每人取一份拼在一起,看看每份是一个“饼”的几分之几? [课件显示拼好后的3/4个饼]
④列一列:怎样用算式表示分饼的数量关系?谁会列式?
⑤算一算:师指一名同学板演算式:3÷4= 4(3)(张)
答:每人分得4(3) 张。
观察刚才所得结果:
1÷3=3(1) 3÷4= 4(3)
讨论、感知关系
讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:
被除数÷除数= 被除数/除数
如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?
学生回答,师板书:a÷b= a/b
师:大家考虑:这里的a和b是否可以是任何自然数?为什么?
生:不可以,因为这里的b≠0
师:左侧b≠0,那么右侧的b是否可以是0?为什么?
师:讨论完后,教师用红色粉笔标上: b≠0
活动三:总结提升,归纳关系。
1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。
2、判断:“分数就是除法,除法就是分数”这句话对不对?
活动四:课堂检测(一)
1、填空:课本P39试一试1。
2、用分数表示下面各式的商。
1÷4= 3÷4= 8÷3= 7÷3=
1÷7= 13÷4= 5÷2= 4÷9=
活动五:假分数带分数互化。
师:观察练习2中的分数哪些是真分数,哪些是假分数?如何将这些假分数化成带分数呢?
生:小组讨论思考
师:以7/3为例讲解,课本P39 T 2、3
师生共同总结互化方法。
1、将假分数化为带分数:分母不变,分子除以分母所得整数为带分数左边整数部分,余数作分子。
2、将带分数化为假分数:分母不变,用整数部分与分母的乘积再加原分子的和作为分子。
活动六:课堂检测(二)
课本P40 练一练 的2、3。
课后作业
用一张16开的纸设计一张数学报,说说各栏目所占的篇幅约占这张报纸的几分之几。
【小学数学《分数与除法》优秀教学设计】相关文章:
小学音乐优秀教学设计03-07
《小数除法练习》竞赛课教学设计10-19
《认识分数》教学设计03-31
《认识时间》数学优秀的教学设计模板12-29
《分数的意义》教学设计03-19
分数除以整数教学设计02-10
分数初步认识教学设计12-01
小升初数学分数加减乘除法应用题精选11-10