教学计划

高一数学教学计划

时间:2024-06-10 06:46:09 教学计划 我要投稿

高一数学教学计划(集合15篇)

  日子如同白驹过隙,很快就要开展新的工作了,是时候静下心来好好写写计划了。相信大家又在为写计划犯愁了吧?以下是小编整理的高一数学教学计划,仅供参考,希望能够帮助到大家。

高一数学教学计划(集合15篇)

高一数学教学计划1

  一、指导思想:

  使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、教材特点:

  我们所使用的教材是人教版《普通高中课程标准实验教科书数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

  1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

  2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

  3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

  4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

  三、教法分析

  1.选取与内容密切相关的,典型的,丰富的'和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

  2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  四、学情分析

  1、基本情况:12班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约人,后进生约人。

  14班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约人,后进生约人。

  2、两个班均属普高班,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

  五、教学措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

  6、重视数学应用意识及应用能力的培养。

  六、教学进度安排

周 次



内 容


重 点、难 点


第1周


2.12~2.18


5


算法与程序框图(2)基本算法语句(3)理解算法的含义。理解程序框图的三种基本逻辑结构。理解5种基本的算法语句。

第2周


2.19~2.25


5


算法案例(6)

高一数学教学计划2

  一 指导思想

  为了使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:

  1.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  2.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力

  3.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  4.提高学习的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  二 学情分析

  1. 基本情况:班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约 人,后进生约人。

  2.我所执教的215班均属普高班,学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

  三 教材分析

  我们采用的教材是人教版必修教材,本册教材共分两章:第四章《三角函数》和第五章《平面向量》。三角函数的主要内容有:任意角的三角函数概念、弧度制、同角三角函数间的关系、诱导公式、两角和与差的三角函数、二倍角的三角函数以及三角函数的图象和性质、已知三角函数值求角等。难点是弧度制的概念、综合运用本章公式进行简单三角函数式的化简及恒等式的证明周期函数的概念,函数y=Asin(x+)的图象与正弦曲线的关系。平面向量主要内容是向量及其运算和解斜三角形,向量的几何表示和坐标表示、向量的线性运算,平面向量的数量积,平面两点间的距离公式,线段的定比分点和中点坐标公式,平移公式,解斜三角形是本章的重点,而向量运算法则的理解和运用,已知两边和其中一边的对角解斜三角形等是本章的难点。

  四 教法分析

  在教学过程中尽量做到以下几个方面:

  1. 选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

  2. 通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3. 在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  五 教学及辅导措施

  1. 激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2. 注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3. 加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4. 抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5. 自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

  6. 重视数学应用意识及应用能力的培养。

  六 优、差生名单及辅导措施

  1. 对于优生:学生自愿成立兴趣小组,兴趣小组可以在老师的指导下由学生自己不定期的开展活动,围绕数学竞赛拓展他们的知识面,加深对所学知识的理解和应用,在原有基础上,稳定班级在数学学习钟的尖子学生,进一步培养他们自主学习的意识。

  2. 对于待发展生:对于成绩较差的学生,针对他们的基础差异和个性差异,耐心细致的进行个别辅导,有问题随时解决,并多予以鼓励。在作业中体现分层。尽量做到因材施教。

  七 教学进度安排

周 次




课时




内 容




重 点、难 点




第1周




5




任意角和弧度制(2)




任意角的三角函数(3)




了解任意角的概念和弧度制,能进行弧度与角度的互化。任意角三角函数的定义。




第2周




5




同角三角函数的基本关系式(3)




三角函数的诱导公式(2)




诱导公式的探究。运用诱导公式。




第3周




5




两角和与差的正弦、余弦、正切 (5)




两角和与差的公式及其应用与求值、化简




第4周




5




二倍角的正弦、余弦、正切 (3)




正、余弦函数的图象(2)




三角函数的倍角公式、和差化积公式




正、余弦函数图象的`画法




第5周




5




三角函数图象与性质(4)




三角函数的图象及其性质。函数思想。




第6周




5




函数y=sin(+)的图象(2)、三角函数模型的简单应用(2)




用参数思想讨论图象的变换过程。用三角模型解决一些具有周期变化规律的实际问题。难点:实际问题抽象为三角函数模型




第7周




5




正切函数的图象和性质(3)




已知三角函数值求角(2)




正切函数的图象和性质




反三角函数的表示




第8周




5




三角函数单元复习




知识点的复习+练习卷




第9周




5




平面向量的实际背景及基本概念(2)、平面向量的线性运算(2)




向量的概念。相等向量的概念。向量的几何表示。向量加、减法的运算及几何意义。向量数乘运算及几何意义。




第10周




5




平面向量的基本定理及坐标表示(2)




平面向量的数量积(2)




平面向量基本定理。会用平面向量数量积的表示向量的模与夹角。




第11周




5




平面向量的应用举例(2)




用向量方法解决实际问题的方法。向量方法解决几何问题的三步曲。




第12周




5




向量平移、正弦定理、余弦定理




向量平移的公式




第13周




5




简单的三角恒等变换(3)




第三章小结(1)




以11个公式为依据,推导和差化积、积化和差等公式,会进行三角变换。




第14周




5




期末复习





第15周




5




期末复习




分章归纳复习+3套模拟测试




高一数学教学计划3

  一、内容及其解析

  1。内容:这是一节建立直线的点斜式方程(斜截式方程)的概念课。学生在此之前已学习了在直角坐标系内确定直线一条直线几何要素,已知直线上的一点和直线的倾斜角(斜率)可以确定一条直线,已知两点也可以确定一条直线。本节要求利用确定一条直线的几何要素直线上的一点和直线的倾斜角,建立直线方程,通过方程研究直线。

  2。解析:直线方程属于解析几何的基础知识,是研究解析几何的开始。从整体来看,直线方程初步体现了解析几何的实质用代数的知识研究几何问题。从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础。对后续圆、直线与圆的位置关系等内容的学习,无论是知识上还是方法上都有着积极的意义。从本节来看,学生对直线既是熟悉的,又是陌生的。熟悉是学生知道一次函数的图像是直线,陌生是用解析几何的方法求直线的方程。直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。

  二、目标及其解析

  1。目标

  掌握直线的点斜式和斜截式方程的推导过程,并能根据条件熟练求出直线的点斜式方程和斜截式方程。

  2。解析

  ①知道直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。知道建立直线方程就是将确定直线的几何要素用代数形式表示出来。

  ②理解建立直线点斜式方程就是用直线上任意一点与已知点这两个点的坐标表示斜率。

  ③经历直线的点斜式方程的推导过程,体会直线和直线方程之间的关系,渗透解析几何的基本思想。

  ④在讨论直线的点斜式方程的应用条件与建立直线的斜截式方程中,体会分类讨论的思想,体会特殊与一般思想。

  ⑤在建立直线方程的过程中,体会数形结合思想。在直线的斜截式方程与一次函数的比较中,体会两者区别与联系,特别是体会两者数形结合的区别,进一步体会解析几何的基本思想。

  三、教学问题诊断分析

  1。学生在初中已经学习了一次函数,知道一次函数的图像是一条直线,因此学生对研究直线的方程可能心存疑虑,产生疑虑的原因是学生初次接触到解析几何,不明确解析几何的实质,因此应跟学生讲请解析几何与函数的区别。

  2。学生能听懂建立直线的点斜式的过程,但可能会不知道为什么要这么做。因此还是要跟学生讲清坐标法的实质把几何问题转化成代数问题,用代数运算研究几何图形性质。

  3。由于学生没有学习曲线与方程,因此学生难以理解直线与直线的方程,甚至认为验证直线是方程的直线是多余的。这里让学生初步理解就行,随着后面教学的深入和反复渗透,学生会逐步理解的。

  四、教法与学法分析

  1、教法分析

  新课标指出,学生是教学的主体。教师要以学生活动为主线。在原有知识的基础上,构建新的知识体系。本节课可采用启发式问题教学法教学。通过问题串,启发学生自主探究来达到对知识的发现和接受。通过纵向挖掘知识的深度,横向加强知识间的联系,培养学生的创新精神。并且使学生的有效思维量加大,随着对新知识和方法产生有意注意,使能力与知识的形成相伴而行,使学生在解决问题的同时,形成方法。

  2、学法分析

  改善学生的学习方式是高中数学课程追求的基本理念。学生的数学学习活动不仅仅限于对概念结论和技能的记忆、模仿和积累。独立思考,自主探索,动手实践,合作交流,阅读自学等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的再创造的过程。为学生形成积极主动的、多样的学习方式创造有利的条件。以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯。

  通过直线的点斜式方程的推导,加深对用坐标求方程的理解;通过求直线的点斜式方程,理解一个点和方向可以确定一条直线;通过求直线的斜截式方程,熟悉用待定系数法求的过程,让学生利用图形直观启迪思维,实现从感性认识到理性思维质的飞跃。让学生从问题中质疑、尝试、归纳、总结,培养学生发现问题、研究问题和分析解决问题的能力。

  五、教学过程设计

  问题1:在直角坐标系内确定直线一条直线几何要素是什么?如何将这些几何要素代数化?

  [设计意图]让学生理解直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。

  问题2:建立直线方程的实质是什么?

  [设计意图]建立直线方程就是将确定直线的几何要素用代数形式表示出来。也就是将直线上点的.坐标满足的条件用方程表示出来。

  引例:若直线经过点,斜率为,点在直线上运动,那么点的坐标满足什么条件?

  [设计意图]让学生通过具体例子经历求直线的点斜式方程的过程,初步了解求直线方程的步骤。

  问题2。1要得到坐标满足什么条件,就是找出与、斜率为之间的关系,它们之间有何种关系?

  (过与两点的直线的斜率为)

  [设计意图]让学生寻找确定直线的条件,体会动中找静。

  问题2。2如何将上述条件用代数形式表示出来?

  [设计意图]让学生理解和体会用坐标表示确定直线的条件。

  用代数式表示出来就是,即。

  问题2。3为什么说是满足条件的直线方程?

  [设计意图]让学生初步感受直线与直线方程的关系。

  此时的坐标也满足此方程。所以当点在直线上运动时,其坐标满足。

  另外以方程的解为坐标的点也在直线上。

  所以我们得到经过点,斜率为的直线方程是。

  问题2。4:能否说方程是经过,斜率为的直线方程?

  [设计意图]让学生初步感受直线(曲线)方程的完备性。尽管学生不可能深刻理解直线(曲线)方程的完备性,但在这里仍要渗透,为后因理解曲线方程的埋下伏笔。

  问题3:推广:已知一直线过一定点,且斜率为k,怎样求直线的方程?

  [设计意图]由特殊到一般的学习思路,培养学生的是归纳概括能力。

  问题4:直线上有无数个点,如何才能选取所有的点?以前学习中有没有类似的处理问题的方法?

  [设计意图]引导学生掌握解析几何取点的方法。

  引导学生求出直线的点斜式方程

  注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。为以后学习曲线与方程打好基础。教学中让学生感觉到这一点就可以。不必做过多解释。

  问题5:从求直线方程的过程中,你知道了求几何图形的方程的步骤有哪些吗?

  [设计意图]让学生初步感受解析几何求曲线方程的步骤。

  ①设点———用表示曲线上任一点的坐标;

  ②寻找条件————写出适合条件;

  ③列出方程————用坐标表示条件,列出方程

  ④化简———化方程为最简形式;

  ⑤证明————证明以化简后的方程的解为坐标的点都是曲线上的点。

  例1分别求经过点,且满足下列条件的直线的方程,并画出直线。

  ⑴倾斜角

  ⑵斜率

  ⑶与轴平行;

  ⑷与轴平行。

  [设计意图]让学生掌握直线的点斜式的使用条件,把直线的点斜式方程作公式用,让学生熟练掌握直线的点斜式方程,并理解直线的点斜式方程使用条件。

  注:⑴应用直线的点斜式方程的条件是:①定点,②斜率存在,即直线的倾斜角。

  ⑵与的区别。后者表示过,且斜率为k的直线方程,而前者不包括。

  ⑶当直线的倾斜角时,直线的斜率,直线方程是。

  ⑷当直线的倾斜角时,此时不能直线的点斜式方程表示直线,直线方程是。

  练习:1。。

  2。已知直线的方程是,则直线的斜率为,倾斜角为,这条直线经过的一个已知点为。

  [设计意图]在直线的点斜式方程的逆用过程中,进一步体会和理解直线的点斜式方程。

  问题6:特别地,如果直线的斜率为,且与轴的交点坐标为(0,b),求直线的方程。

  [设计意图]由一般到特殊,培养学生的推理能力,同时引出截距的概念和直线斜截式方程。

  将斜率与定点代入点斜式直线方程可得:

  说明:我们把直线与y轴交点(0,b)的纵坐标b叫做直线在y轴上的截距。这个方程是由直线的斜率与它在y轴上的截距b确定,所以叫做直线的斜截式方程。

  注(1)截距可取任意实数,它不同于距离。直线在轴上截距的是。

  (2)斜截式方程中的k和b有明显的几何意义。

  (3)斜截式方程的使用范围和斜截式一样。

  问题7:直线的斜截式方程与我们学过的一次函数的类似。我们知道,一次函数的图像是一条直线。你如何从直线方程的角度认识一次函数?一次函数中k和b的几何意义是什么?

  [设计意图]让学生理解直线方程与一次函数的区别与联系,进一步理解解析几何的实质。函数图像是以形助数,而解析几何是以数论形。

  练习:1。。

  2。直线的斜率为2,在轴上的截距为,求直线的方程。

  [设计意图]让学生明确截距的含义。

  3。直线过点,它的斜率与直线的斜率相等,求直线的方程。

  [设计意图]让学生进一步理解直线斜截式方程的结构特征。

  4。已知直线过两点和,求直线的方程。

  [设计意图]让学生能合理选择直线方程的不同形式求直线方程,同时为下节学习直线的两点式方程埋下伏笔。

  例2:已知直线,试讨论

  (1)与平行的条件是什么?

  (2)与重合的条件是什么?

  (3)与垂直的条件是什么?

  说明:①平行、重合、垂直都是几何上位置关系,如何用代数的数量关系来刻画。

  ②教学中从两个方面来说明,若两直线平行,则且反过来,若且,则两直线平行。

  ③若直线的斜率不存在,与之平行、垂直的条件分别是什么?

  练习:

  问题8:本节课你有哪些收获?

  要点:

  (1)直线方程的点斜式、斜截式的命名都是顾名思义的,要会加以区别。

  (2)两种形式的方程要在熟记的基础上灵活运用。

  总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。

高一数学教学计划4

  一、活动开展情景

  在我县,今年的教学主体是“有效教学”,为此,我组在开展教研活动时也是紧紧围绕这一主题进行开的。在本学期内,我组主要开展过以下活动:

  1、备课。本学期备课的形式主要是一个人备课为主,团体备课为辅。具体流程为个人备课→团体备课→个人备课,简称三级备课。

  2、公开课。本学期的公开课主要是以每位教师不低于一次公开课的标准来执行的。公开课的开展形式与以往也有所不一样,以往的公开课仅有听课和评课两个环节,忽视了说课环节。但本学期却是把以往忽视了的说课环节也补上了,流程上将说课环节放在课前,构成了课前说课→听课授课→评课议课的模式。

  3、课赛。本学期我组共参加过校外课赛一人次,获得三等奖一人次。校内不设课赛活动。

  4、示范课。本学期我组上过示范课共计四人次,校内示范课三人次,校外示范课1人次。

  5、数学竞赛。本学期我组共组织开展过数学竞赛一次,参赛学生达50余人,占全校学生总数的近10%。向学校申请获得专项资金710元,受益学生37人。颁发“优秀辅导教师”荣誉称号三人次。

  6、学校文化建设。本学期我组特向学校申请宣传栏展板一块(近3平方米),在宣传和展

  示我组的相关活动照片以及文件精神的同时,也在完善我校的学校文化建设。

  7、阶段性教学质量反馈座谈会。本学期共开展过两次这类会议。

  8、其他活动。外出培训学习四人次,网络培训学习6人次。全组成员外出交流学习两次,其他派代表外出交流学习三次。

  二、活动成效

  1、促进了教师队伍的建设和完善。本学期我组教师在以团队合作及个人努力拼搏相得益彰的结合下,经过以上一系列的活动加强了师师之间、师生之间、生生之间的沟通协调,再加以学校对本组的大力支持,本学期我组对教师队伍的建设取得了必须的成效。

  2、开拓了教师的视野,提升了团队的师资力量。经过外出培训学习,网络学习以及与其他学校开展教研交流活动,不但开拓了我组教师的视野,同时也提升了我组教师的专业素养。

  3、促进教师的个人成长与团队合作精神。经过开展团体备课、公开课、示范课以及课赛等活动,不但促进了我组教师的个人成长,同时也加强了我组的团队合作精神。

  4、构成了良好的竞争观念和大局意识。经过开展课赛活动和设立“优秀辅导教师”奖,在团队之间有了竞争观念,同时也经过绩效的捆绑使得组内成员有了大局意识。

  三、存在问题

  1、缺乏领导艺术和管理本事。在我校数学组成员中,我属最年轻的'数学教师之一,自然在管理的过程中对很多老教师心存芥蒂,这是心理隔阂问题;很难做到在对老教师十分尊重的同时又让他们对自我的主张很服从,这是本事问题,也是领导艺术问题;很难做到让年轻教师彰显个性的同时又让他们能够严格约束自我,这是沟通问题。

  2、个人精力有限。本人在担任我校数学教研组的同时还承担着两个毕业班的数学教学工作和一个毕业班的班主任工总,工作任务较为繁重。所以,各项工作难免会出现百密而一疏的漏洞。

  3、缺乏组织和管理实践经验。参加工作才一年半就开始担任这样的职务,组织管理一群比自我大的成年人,这是零起点,无从谈及组织和管理经验。唯有摸着石头过河,边工作边总结,逐步积累这方面的实践经验。

  四、努力方向

  对于目前存在的问题,日后改善的措施还是以人为本,尊重同事,在虚心向经验丰富异常以往从事过这方面工作的老教师请教的同时,也要加强与年轻教师的沟通,多听取他们的意见提议,努力提高自我的业务水平和管理本事,不断学习新的管理理念,提高自我的管理艺术和组织本事。

高一数学教学计划5

  Ⅰ.教学内容解析

  本节课的教学内容,是指数函数的概念、性质及其简单应用.教学重点是指数函数的图像与性质.

  这是指数函数在本章的位置.

  指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数.它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践.指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础.因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程.

  指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义.

  Ⅱ.教学目标设置

  1.学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念.

  2.学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小.

  3.学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法.

  4.在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力.

  Ⅲ.学生学情分析

  授课班级学生为南京师大附中实验班学生.

  1.学生已有认知基础

  学生已经学习了函数的概念、图象与性质,对函数有了初步的认识.学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力.学生已有研究一次函数、二次函数等初等函数的直接经验.学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯.

  2.达成目标所需要的认知基础

  学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力.

  3.难点及突破策略

  难点:1. 对研究函数的一般方法的认识.

  2. 自主选择底数不当导致归纳所得结论片面.

  突破策略:

  1.教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段.

  2.组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思.

  3.对猜想进行适当地证明或说明,合情推理与演绎推理相结合.

  Ⅳ.教学策略设计

  根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式.通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段.

  学生的自主学习,具体落实在三个环节:

  (1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念.

  (2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升.

  (3)性质应用阶段,学生自主举例说明指数函数性质的应用.

  研究函数的性质,可以从形和数两个方面展开.从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明.

  Ⅴ.教学过程设计

  1.创设情境建构概念

  师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系.你能用函数的观点分析下面的例子吗?

  师:大家知道细胞分裂的规律吗?(出示情境问题)

  [情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系?

  [情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%.如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系?

  [师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=0.84x.

  师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?

  〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?

  [设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的.联系.引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示.初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构.指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>0.a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义.为了使指数函数与对数函数能构成反函数,规定a≠1.此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”.

  [师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax.

  [教学预设]学生能举出具体的例子——y=3x,y=0.5x….如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现.进而提出这类函数一般形式y=ax.

  方案1:

  生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))

  师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)

  生:函数y=0.5x,y= x,y=(-2)x,y=1x…

  师:板书学生举例(停顿),好像有不同意见.

  生:底数不能取负数.

  师:为什么?

  生:如果底数取负数或0,x就不能取任意实数了.

  师:我们已经将指数的取值范围扩充到了R,我们希望这些函数的定义域就是R.

  (若没有学生注意到底数的取值范围,可引导学生关注例举函数的定义域.若有同学提出情境中函数的定义域应为N+,师:我们已经将指数的取值范围扩充到了R,函数y=2x和y=0.84x中,能否将定义域扩充为R?你们所举的例子中,定义域是否为R?)

  师:这些函数有什么共同特点?

  生:都有指数运算.底数是常数,自变量在指数位置.

  (若有学生举出类似y=max的例子,引导学生观察,它依然具有自变量在指数位置的特征.而刻画这一特点的最简单形式就是y=ax,从而初步建立函数模型y=ax,初步体会基本初等函数的作用.)

  师:具备上述特征的函数能否写成一般形式?

  生:可以写成y=ax(a>0).

  师:当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)

  方案2:

  生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))

  师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)

  生:函数y=0.5x,y= x,…

  师:这些函数的自变量是什么?它们有什么共同特点?

  生:(可用文字语言或符号语言概括)都有指数运算.底数是常数,自变量在指数位置.可以写成y=ax.

  师:y=ax中,自变量是x,底数a是常数.以上例子的不同之处,是底数不同.那你觉得底数的取值范围是什么呢?

  生:底数不能取负数.

  师:为什么?

  生:如果底数取负数或0,x就不能取任意实数了.

  师:为了研究的方便,我们要求底数a>0.当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)

  [阶段小结]一般地,函数y=ax(a>0且a≠1)称为指数函数.它的定义域是R.

  [意图分析]概念教学应当让学生感受形成过程,了解知识的来龙去脉,那种直接抛出定义后辅以“三项注意”的做法剥夺了学生参与概念形成的过程.此处不宜纠缠于y=22x是否为指数函数等细枝末节.指数函数的基本特征是自变量出现在指数上,应促使学生对概念本质的理解.指数函数概念的形成,经历了一个由粗到细,由特殊到一般,由具体到抽象的渐进过程,这样更加符合人们的认知心理.

  2.实验探索汇报交流

  (1)构建研究方法

  师:我们定义了一个新的函数,接下来,我们研究什么呢?

  生:研究函数的性质.

  〖问题2你打算如何研究指数函数的性质?

  [设计意图]学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.在此认知基础上,引导学生自己提出所要研究的问题,寻找研究问题的方法.开始的问题较宽泛,教师要缩小问题范围,用提示语口头提问启发.教师应充分尊重学生的思维个性,提供自主探究的平台,通过汇报交流活动达成共识实现殊途同归.中学阶段,特别是高一新授课阶段,提倡学生以形象思维作为抽象思维的支撑.

  [师生活动]师生经过讨论,解决启发性提示问题,确定研究的内容与方法.

  [教学预设]学生能够根据已有知识和经验,在教师的启发引导下,明确研究的内容以及研究的方法.部分学生会提出先作出具体函数图象,观察图象,概括性质,并进而归纳出一般函数的图象的分布特征等性质.另一部分学生可能从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.

  师:(稍等片刻)我们一般要研究哪些性质呢?

  生:变量取值范围(定义域、值域)、单调性、奇偶性.

  师:(板书学生回答)怎样研究这些性质呢?

  生:先画出函数图象,观察图象,分析函数性质.

  生:先研究几个具体的指数函数,再研究一般情况.

  师:板书“画图观察”,“取特殊值”

  (若没有学生提出从特殊到一般的思路.师:底数a的取值不同,函数的性质可能也会有不同.一次函数y=kx(k≠0)中,一次项系数k不同,函数性质就不同.底数a可以取无数多个值,那我们怎么办呢?)

  (若有学生通过对y=2x解析式的分析,得到了性质,并提出从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.师:你的想法也很有道理,不妨试一试.(仍引导学生从具体指数函数图象入手.))

  [意图分析]学习的过程就是一个不断地提出问题、解决问题的过程.提出问题比解决问题更重要,给学生提供由自己提出问题、确定研究方法的机会,逐渐学会研究问题,促进能力发展.

  (2)自主探究汇报交流

  师:我们确定了要研究的对象和具体做法,下面可以开始研究指数函数的性质了.

  〖问题3选取数据,画出图象,观察特点,归纳性质.

  [设计意图]若直接规定底数取值,对于为什么要以y=2x,y=3x,y=0.5x为例,为什么要根据底数的大小分类讨论,缺乏合理的解释,学生对于图象的认识是被动的.若在探究前经讨论确定底数取值,由于学生认知水平的差异,仍可能会造成部分学生被动接受.学生自主选择底数,虽有得到片面认识的可能,但通过讨论交流,学生能相互验证结论,仍能得到正确认识.并且学生能在过程中体会数据如何选择,了解研究方法.

  由于描点作图时列举点的个数的限制,学生对x→∞时函数图象特征缺乏直观感受.而且由于所举例子个数的限制,学生对于归纳的结论缺乏一般性的认识.教师应利用绘图软件作出底数连续变化的图象 ,验证猜想.

  数形结合、从特殊到一般的思维方法是概括归纳抽象对象的一般思维方法,本节课的重点是通过对指数函数图象性质的研究,总结研究函数的一般方法,应充分发动学生参与研究的每个过程,得到直接体验.

  [师生活动]学生选取不同的a的值,作出图象,观察它们之间的异同,总结指数函数的图象特征与函数性质.

  [教学预设]学生通过观察图象,发现指数函数y=ax(a>0且a≠1)的性质.教师用实物投影仪展示学生所画图象,学生根据具体函数图象说明具体函数性质.在学生说明过程中,教师引导学生对结论进行适当的说明,进而引导学生归纳一般指数函数的性质.教师引导学生关注列表描点作图的过程,引导学生通过反思过程,并通过动态图象验证猜想,促进学生体会数形结合的分析方法.教师尊重生成,但需引导学生区别指数函数本身的性质与指数函数之间的性质.其中⑥⑦不强加于学生.对于⑥,要引导学生在同一坐标系中画出图象,启发学生观察底数互为倒数的指数函数的图象,先得到具体的例子.对于⑦,在例1第3小题中,会有学生提出利用不同底数指数函数图象解决,可顺势利导,也可布置为课后作业,继续研究.

  生:自主选择数据,在坐标纸上列表作图,列出函数性质.

  师:(巡视,必要时参与讨论,及时提示任务,待大部分学生有结论后,鼓励学生交流,请学生汇报.)有条理地整理一下结论,讨论交流所得.(同时用实物投影仪展示学生所画图象.若没有投影仪,用几何画板作出图象.)

  生:(可能出现的情况)(1)在两个坐标系中画图;(2)所取底数均大于1;(3)两个底数大于1,一个底数小于1;(4)关于y轴对称的两个指数函数.

  师:(过程性引导)底数你是怎么取的?你是怎样观察出结论的?在列表过程中,你有什么发现吗?为什么要在两个坐标系中画图?为什么不也取两个底数小于1?

  师:(用彩笔描粗图象,故意出错)错在哪里?为什么?

  生:指数函数是单调递增的,过定点(0, 1).

  师:(引导学生规范表述,并板书)指数函数在(-∞, +∞)上单调递增,图象过定点(0, 1).

  师:指数函数还有其它性质吗?

  师:也就是说值域为(0, +∞).

  生:指数函数是非奇非偶函数.

  师:有不同意见吗?

  生:当0

  (其它预设:

  (1)当a>1时,若x>0,则y>1;若x<0,则y<1.

  当00,则y<1;若x<0 y="">1.

  欲知谁正确,让我们一起来观察、研探.

  思路2.复习元素与集合的关系——属于与不属于的关系,填空:(1)0N;(2)2Q;(3)-1.5R.

  类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(答案:(1)∈;(2)?;(3)∈)

  推进新课

  提出问题

  (1)观察下面几个例子:

  ①A={1,2,3},B={1,2,3,4,5};

  ②设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;

  ③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};

  ④E={2,4,6},F={6,4,2}.

  你能发现两个集合间有什么关系吗?

  (2)例子①中集合A是集合B的子集,例子④中集合E是集合F的.子集,同样是子集,有什么区别?

  (3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?

  (4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?

  (5)试用Venn图表示例子①中集合A和集合B.

  (6)已知A?B,试用Venn图表示集合A和B的关系.

  (7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?

  (8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?

  (9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论?

  活动:教师从以下方面引导学生:

  (1)观察两个集合间元素的特点.

  (2)从它们含有的元素间的关系来考虑.规定:如果A B,但存在x∈B,且x A,我们称集合A是集合B的真子集,记作A B(或B A).

  (3)实数中的“≤”类比集合中的 .

  (4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.

  (5)封闭曲线可以是矩形也可以是椭圆等等,没有限制.

  (6)分类讨论:当A B时,A B或A=B.

  (7)方程x2+1=0没有实数解.

  (8)空集记为 ,并规定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).

  (9)类比子集.

  讨论结果:

  (1)①集合A中的元素都在集合B中;

  ②集合A中的元素都在集合B中;

  ③集合C中的元素都在集合D中;

  ④集合E中的元素都在集合F中.

  可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.

  (2)例子①中A B,但有一个元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.

  (3)若A B,且B A,则A=B.

  (4)可以把集合中元素写在一个封闭曲线的内部来表示集合.

  (5)如图1121所示表示集合A,如图1122所示表示集合B.

  图1-1-2-1 图1-1-2-2

  (6)如图1-1-2-3和图1-1-2-4所示.

  图1-1-2-3 图1-1-2-4

  (7)不能.因为方程x2+1=0没有实数解.

  (8)空集.

高一数学教学计划12

  教材教法分析

  本节课是苏教版普通高中课程标准实验教科书数学必修(2)第2章第三节的第一节课.该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化.教材通过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中.同时,通过对《空间直角坐标系》的学习和掌握将对今后学习本节内容《空间两点间的距离》和选修2-1内容《空间中的向量与立体几何》有着铺垫作用.由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系.

  学情分析

  一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力.另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系,根据坐标利用代数的方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的思想.这两方面都为学习本课内容打下了基础.

  教学目标

  1.知识与技能

  ①通过具体情境,使学生感受建立空间直角坐标系的必要性

  ②了解空间直角坐标系,掌握空间点的.坐标的确定方法和过程

  ③感受类比思想在探究新知识过程中的作用

  2.过程与方法

  ①结合具体问题引入,诱导学生探究

  ②类比学习,循序渐进

  3.情感态度与价值观

  通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法.通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间.

  教学重点

  本课是本节第一节课,关键是空间直角坐标系的建立,对今后相关内容的学习有着直接的影响作用,所以本课教学重点确立为空间直角坐标系的理解.

  教学难点

  通过建立恰当的空间直角坐标系,确定空间点的坐标。

  先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出第三根轴的建立,进而感受逐步发展得到空间直角坐标系的建立,再逐步掌握利用坐标表示空间任意点的位置.总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论.

高一数学教学计划13

  一、教学内容

  本学期将完成数学必修1和数学必修4 (人教A版)两本教材的的学习,教学辅助材料有《同步金太阳导学》。

  二、教学目标与要求

  认真深入地学习《新课程标准》,研读教材。明确教学目的,把握教学目标,把准教学标高。注意到新教材的特点亲和力问题性思想性联系性,注意对基本概念的理解、基本规律的掌握、基本方法的应用上多下功夫,转变教学观念,螺旋上升地安排核心数学概念和重要数学思想,加强数学思想方法的渗透与概括。在课堂教学中要以学生为主,注重师生互动,对基本的知识点要落实到位,新教材对教学中有疑问的地方要在备课组中多加讨论和研究,特别是有关概念课的'教学,一定要讲清概念的发生、发展、内涵、外延,不要模棱两可。

  1. 处理好初高中衔接问题。初中内容的不适当删减、降低要求,导致学生双基无法达到高中教学要求;高中不顾学生的基础,任意拔高教学要求,繁琐的、高难度的运算充斥课堂。对初中没学而高中又要求掌握的内容(具体内容见附录)。

  2. 准确把握教学要求,循序渐进地教学。不搞一步到位删减的内容不要随意补充;不要擅自调整内容顺序;教辅材料不能作为教学的依据;把更多的注意力放在核心概念、基本数学思想方法上;追求通性通法,不追求特技。

  3. 适当使用信息技术。新课程主张多媒体教学。在教材中很容易发现新课改对信息技术在数学教学上的应用,并在配备的光盘中提供了相当数量的课件,有利于学生更全面的吸收知识,提高课堂注意力和学习的兴趣。但我还是认为,多媒体知识教学的辅助手段,选不选用多媒体要看教学内容。尤其是数学这门学科,有些直观的内容用多媒体还是不错的,但有的内容诸如让学生思考体会的问题不是很适合多媒体教学的。根据学习内容需要选择恰当的信息技术工具和使用科学型计算器;提倡适当使用各种数学软件。

  4. 充分发挥集体备课的作用。利用每周一次的集体备课,认真讨论本周的教学得失,研究下周所教内容的重难点,安排周练的内容。要根据实际情况,有针对性地组编训练题,做到每周一次综合训练(同步或滚雪球式的保温训练),一次微型补差训练,要搞好单元过关训练。选题要注意基础,强化通法,针对性强,避免对资料上的训练题全套照搬使用。要重视对数学尖子生的培养,力争在数学竞赛中取得好成绩。

  5. 在重视智力因素的同时必须关注非智力因素。应认识到非智力因素在学生全面发展和数学学习过程中所起的重要作用,并内化为自觉的行为,切实培养学生学习数学的兴趣和良好的个性品质。

高一数学教学计划14

  本节课在教材中的地位和作用:《不等式的基本性质》,对即将要学习的一元一次不等式的解法乃至高中的不等式的运用都是非常重要的基础。本节内容掌握的好坏,将直接影响到后面的教学内容。而对于不等式的基本性质1和2,相信绝大部分的学生都不会有很大困难,而不等式的基本性质3,通过对以往学生的了解,发现很多学生会忘记分正负两种情况,因此在本节新课教学中,我采用了将不等式未知的性质与等式已知的性质进行类比教学,让学生自己去发现验证不等式的性质。

  一、教学目标:

  (一)知识与技能

  1.掌握不等式的三条基本性质。

  2.运用不等式的基本性质对不等式进行变形。

  (二)过程与方法

  1.通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想。

  2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力。

  (三)情感态度与价值观

  通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质。

  二、教学重难点

  教学重点: 探索不等式的三条基本性质并能正确运用它们将不等式变形。

  教学难点: 不等式基本性质3的'探索与运用。

  三、教学方法:自主探究——合作交流

  四、教学过程:

  情景引入:1.举例说明什么是不等式?

  2.判断下列各式是否成立?并说明理由。

  ( 1 )若x-4=12, 则x=16()

  ( 2 )若3x=12, 则 x=4()

  ( 3 )若x-4>12 则 x>16()

  ( 4 )若3x>12则 x>4()

  【设计意图】(1)、(2)小题唤起对旧知识等式的基本性质的回忆,(3)、(4)小题引导学生大胆说出自己的想法。通过复习既找准了旧知停靠点,又创设了一种情境,给学生提供了类比、想象的空间,为后续学习做好了铺垫。

  教师导语:当我们开始研究不等式的时候,自然会联想到它是否与等式有相类似的性质。这节课我们就通过类比来探究不等式的基本性质。

  温故知新

  问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗?

  等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。

  估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。教师引导:“=”没有方向性,所以可以说所得结果仍是等式,而不等号:“>,<,≥,≤”具有方向性,我们应该重点研究它在方向上的变化。

  问题2.你能通过实验、猜想,得出进一步的结论吗?

  同桌同学通过实例验证得出结论,师生共同总结不等式性质1。

  问题3.你能由等式性质2进一步猜想不等式还具有什么性质吗?

  等式性质2:等式两边都乘或除以同一个数(除数不能是0),等式依然成立。

  估计学生会猜:不等式两边都乘或除以同一个数(除数不能是0),不等号的方向不变。

  你能和小伙伴一起来验证你们的猜想吗?(教师鼓励学生实践是检验真理的唯一标准。)

  学生在小组内合作交流,发现了在不等式两边都乘或除以同一个数时,不等号的方向会出现两种情况。教师进一步引导学生通过分析、比较探索规律,从而形成共识,归纳概括出不等式性质2和3。

  【设计意图】猜想作为教学的出发点,启发学生积极思维,探索规律,让学生在“做”数学中学数学,真正成为学习的主人。

  问题4.在不等式两边都乘0会出现什么情况?

  问题5.如果a、b、c表示任意数,且a

  【设计意图】把文字语言转化为数学语言,是数学学习中的一项基本能力,这里有意识地进行渗透,指导学生先作变形再填不等号,对字母c的取值进行讨论,培养学生的分类意识,对培养学生的思维能力有十分重要的意义。

  【想一想】不等式的基本性质与等式的基本性质有什么相同之处,有什么不同之处?

  学生思考,独立总结异同点。

  【设计意图】引导学生把二者进行比较,有助于加深对不等式基本性质的理解,促成知识的“正迁移”。

  综合训练:你能运用不等式的基本性质解决问题吗?

  1、课本62页例3

  教师引导学生观察每个问题是由a>b经过怎样的变形得到的,应该应用不等式的哪条基本性质。由学生思考后口答。

  【设计意图】对学生进行推理训练,让学生明白,叙述要有根据,进一步提高学生的逻辑思维能力和语言表达能力。

  2、你认为在运用不等式的基本性质时哪一条性质最容易出错,应该怎样记住?

  【设计意图】及时进行学习反思,总结经验,通过相互评价学习效果,及时发现问题、解决知识盲点,培养学生的创新精神和实践能力。

  3.小明的困惑:

  小明用不等式的基本性质将不等式m>n进行变形,两边都乘以4,4m>4n,两边都减去4m, 0>4n-4m,即0>4(n-m),两边都除以(n-m),得0>4,0怎么会大于4呢?

  小明可糊涂了……聪明的同学,你能告诉小军他究竟错在什么地方吗?同桌讨论。

  【设计意图】通过替人排忧解难,强化对不等式三个基本性质的理解与运用,突出重点,突破难点。

  4.火眼金睛

  ①a>2, 则3a___2a

  ②2a>3a,则 a ___ 0

  【设计意图】通过变式训练,加深学生对新知的理解,培养学生分析、探究问题的能力。

  课堂小结:

  这节课你有哪些收获?有何体会?你认为自己的表现如何?教师引导学生回顾、思考、交流。

  【设计意图】回顾、总结、提高。学生自觉形成本节的课的知识网络。

  思考题:你来决策

  咱们班的王帅同学准备在五、一期间和他的爸爸、妈妈外出旅游。青年旅行社的标准为:大人全价,小孩半价;方正旅行社的标准为:大人、小孩一律八折。若两家旅行社的基本价一样,你能帮王帅同学考虑一下选择哪家旅行社更合算吗?

  【设计意图】利用所学的数学知识,解决生活中的问题,加强数学与生活的联系,体验数学是描述现实世界的重要手段。既培养了学生用数学知识解决实际问题的能力,又树立了学好数学的信心。

高一数学教学计划15

  为了做好这学期的数学教学工作,结合学校二轮课改要求和“十六字方针”特作计划如下:

  一、工作目标:

  高一下学期的工作是第二册课本教学任务;

  二、教法分析:

  1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

  2。积极探索改革教学,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,转变思想,积极探索,改革教学。爱因斯曾经说过:“兴趣是最好的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。

  3.通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  4.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的'习惯。

  三、教学措施:

  1.转变教师的教学方式转变学生的学习方式

  教师要以新理念指导自己的教学工作,牢固树立学生是学习的主人,以平等、宽容的态度对待学生,在沟通和"对话"中实现师生的共同发展,努力建立互动的师生关系。本学期要继续以改变学生的学习方式为主,提倡探究性学习、参与性学习和实践性学习。

  2.发挥备课组的集体作用

  集体备课,教案要求统一。每次备课都有一个主题,然后集体讨论,补充完善。同时,根据各班的具体情况,适当进行调整,以适应学生的实际情况为标准,让学生学会并且掌握,不搞教条主义和形式主义。教案应体现知识体系、思维方法、训练应用,以及渗透运用等,要对重点、难点有分析和解决方法。

  3.详细计划,保证练习质量

  教学中用配备资料《创新设计》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周的一份周测练习试卷,存在的普遍性问题要及时安排时间讲评。

  4.加强辅导工作

  对已经出现数学学习困难的学生,教师的个别辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的学困学生。

【高一数学教学计划】相关文章:

高一数学教学计划(15篇)11-14

高一数学教学计划(精选15篇)07-15

高一数学教学计划(精选15篇)12-24

高一上数学教学计划01-13

高一数学组教学计划12-16

高一数学培优补差教学计划04-06

高一数学教学计划精选15篇12-26

高一数学教学计划优秀范文 高二数学教学计划范文12-13

高一数学教学计划集合九篇02-27

高一数学教学计划集锦15篇12-23